Applications of q-Real Numbers to Triple q-Hypergeometric Functions and q-Horn Functions
Abstract
:1. Introduction
2. First -Calculus Definitions
3. Survey of -Real Numbers
4. Confluent Triple -Lauricella Functions
5. A Summation Formula for the Second -Appell Function
6. Transformation Formulas for the -Horn Functions
7. Discussion
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Exton, H. On certain confluent hypergeometric functions of three variables. Ganita 1970, 21, 79–92. [Google Scholar]
- Exton, H. Certain hypergeometric functions of four variables. Bull. Soc. Math. Grece 1972, 13, 104–113. [Google Scholar]
- Srivastava, H.M. A formal extension of certain generating functions. Glas. Mat. III Ser. 1970, 5, 229–239. [Google Scholar]
- Srivastava, H.M. A formal extension of certain generating functions II. Glas. Mat. III Ser. 1971, 6, 35–44. [Google Scholar]
- Qureshi, M.I.; Quraishi, K.A.; Khan, B.; Arora, A. Transformations associated with quadruple hypergeometric functions of Exton and Srivastava. Asia Pac. J. Math. 2017, 4, 38–48. [Google Scholar]
- Karlsson, P. On intermediate Lauricella functions. Jñānābha 1986, 16, 211–222. [Google Scholar]
- Ernst, T. Aspects opérateurs, systèmes d’équations aux q-différences et q-intégrales pour différents types de q-fonctions multiples dans l’esprit de Horn, Debiard et Gaveau, Operator aspects, systems of q-difference equations et q-integrals for different types of multiple q-functions in the spirit of Horn, Debiard and Gaveau (French). Algebras Groups Geom. to be published.
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Ernst, T. Convergence aspects for q-Lauricella functions. Adv. Stud. Contemp. Math. 2012, 22, 35–50. [Google Scholar]
- Ernst, T. Three algebraic number systems based on the q-addition with applications. Ann. Univ. Marie Curie Sect. A 2021, 75, 45–71. [Google Scholar] [CrossRef]
- Ernst, T. On Eulerian q-integrals for single and multiple q-hypergeometric series. Commun. Korean Math. Soc. 2018, 33, 179–196. [Google Scholar]
- Lauricella, G. On hypergeometric functions of several variables. (Sulle Funzioni Ipergeometriche a piu Variabili). Rend. Circ. Mat. Palero 1893, 7, 111–158. (In Italian) [Google Scholar] [CrossRef]
- Exton, H. Multiple hypergeometric functions and applications. In Mathematics and Its Applications; Ellis Horwood Ltd.: Chichester, UK; Halsted Press: New York, NY, USA; London, UK; John Wiley & Sons, Inc.: Sydney, Australia, 1976. [Google Scholar]
- Lal, C. On the sum of Appell function F2. Indian J. Pure Appl. Math. 1975, 6, 624–627. [Google Scholar]
- Qureshi, M.I.; Pathan, M.A. A note on the sum of Appell function F2. Indian J. Pure Appl. Math. 1984, 15, 1239–1243. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ernst, T. Applications of q-Real Numbers to Triple q-Hypergeometric Functions and q-Horn Functions. Mathematics 2023, 11, 2370. https://doi.org/10.3390/math11102370
Ernst T. Applications of q-Real Numbers to Triple q-Hypergeometric Functions and q-Horn Functions. Mathematics. 2023; 11(10):2370. https://doi.org/10.3390/math11102370
Chicago/Turabian StyleErnst, Thomas. 2023. "Applications of q-Real Numbers to Triple q-Hypergeometric Functions and q-Horn Functions" Mathematics 11, no. 10: 2370. https://doi.org/10.3390/math11102370
APA StyleErnst, T. (2023). Applications of q-Real Numbers to Triple q-Hypergeometric Functions and q-Horn Functions. Mathematics, 11(10), 2370. https://doi.org/10.3390/math11102370