DNN-MLVEM: A Data-Driven Macromodel for RC Shear Walls Based on Deep Neural Networks
Abstract
:1. Introduction
2. The DNN-MVLEM
2.1. Base Elements
2.2. Material Models for Vertical Elements
2.3. Material Model for Shear Spring
2.4. Calibration Factors
3. Parametric FEM Model for Data Generation
3.1. Validation
4. Data-Driven Component
4.1. DNN Architecture and Performance
5. Numerical Examples
5.1. Stand-Alone RC Shear Wall
5.2. Multi-Story Frame
6. Discussion of the Results
6.1. Accuracy
6.2. Calibrated vs. Uncalibrated Response
6.3. Computational Efficiency
6.4. Advantages Summary
- Computational Efficiency. The DNN-MVLEM can substantially speed up the non-linear analysis of large structures. In the presented numerical example labeled scenario D, a five-story frame is analyzed using both approaches. The analysis for the structure where the walls are modeled with the DNN-MVLEM is 116 times faster, taking 10.75 s to finalize compared to the 1253 s (or about 20 min) for the analysis with the walls modeled with the microscopic FEM model.
- Simplicity. The full DNN-MVLEM can be created based only on the basic properties of the RC shear wall and the pre-trained DNN model. There are no difficult-to-obtain parameters required for its definition. Furthermore, the implemented material models and element formulations are typically included in most commercial FEM packages.
- Adaptability. The methodology developed to create the DNN-MVLEM could be easily enhanced or adapted to tackle new challenges. For instance, increasing the lower and upper bound of the input values or adding additional variables to the problem. These improvements are relatively easy to implement by adding more data points to the training data and re-training the model. Similarly, the same strategy could be adapted to other types of RC shear walls, such as L-shaped or T-shaped geometries.
- Improved convergence rate. The DNN-MVLEM has been shown to have fewer convergence problems than those encountered with the microscopic FEM model. This can be appreciated in example F, where the FEM model failed to converge to the target displacement of 600 mm, but the DNN-MVLEM reached the target without issue. One potential explanation is that the elements conforming to the macromodel are based on simpler element and material formulations, making them less sensitive to convergence problems.
6.5. Scope and Applicability of DNN-MVLEM
6.6. Current Limitations and Future Enhancements
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tuna, Z. Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings. Ph.D. Thesis, UCLA, Los Angeles, CA, USA, 2012. [Google Scholar]
- Fintel, M. Performance of Buildings With Shear Walls in Earthquakes of the Last Thirty Years. PCI J. 1995, 40, 62–80. [Google Scholar] [CrossRef]
- Mo, Y.; Zhong, J.; Hsu, T. Seismic simulation of RC wall-type structures. Eng. Struct. 2008, 30, 3167–3175. [Google Scholar] [CrossRef]
- Jalali, A.; Dashti, F. Nonlinear behavior of reinforced concrete shear walls using macroscopic and microscopic models. Eng. Struct. 2010, 32, 2959–2968. [Google Scholar] [CrossRef]
- Mulas, M.; Coronelli, D.; Martinelli, L. Multi-scale modelling approach for the pushover analysis of existing RC shear walls—Part I: Model formulation. Earthq. Eng. Struct. Dyn. 2007, 36, 1169–1187. [Google Scholar] [CrossRef]
- Mulas, M.; Coronelli, D.; Martinelli, L. Multi-scale modelling approach for the pushover analysis of existing RC shear walls—Part II: Experimental verification. Earthq. Eng. Struct. Dyn. 2007, 36, 1189–1207. [Google Scholar] [CrossRef]
- Ayoub, A.; Filippou, F. Nonlinear finite-element analysis of RC shear panels and walls. J. Struct. Eng. 1998, 124, 298–308. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, C.; Nie, X.; Fan, J.S.; Zhu, Y.J. Nonlinear model updating algorithm for biaxial reinforced concrete constitutive models of shear walls. J. Build. Eng. 2021, 44, 103215. [Google Scholar] [CrossRef]
- Luu, C.; Mo, Y.; Hsu, T. Development of CSMM-based shell element for reinforced concrete structures. Eng. Struct. 2017, 132, 778–790. [Google Scholar] [CrossRef]
- Liao, F.Y.; Han, L.H.; Tao, Z. Performance of reinforced concrete shear walls with steel reinforced concrete boundary columns. Eng. Struct. 2012, 44, 186–209. [Google Scholar] [CrossRef]
- Dong, Y.R.; Xu, Z.D.; Zeng, K.; Cheng, Y.; Xu, C. Seismic behavior and cross-scale refinement model of damage evolution for RC shear walls. Eng. Struct. 2018, 167, 13–25. [Google Scholar] [CrossRef]
- Dashti, F.; Dhakal, R.P.; Pampanin, S. Numerical Modeling of Rectangular Reinforced Concrete Structural Walls. J. Struct. Eng. 2017, 143, 04017031. [Google Scholar] [CrossRef]
- Epackachi, S.; Whittaker, A.S. A validated numerical model for predicting the in-plane seismic response of lightly reinforced, low-aspect ratio reinforced concrete shear walls. Eng. Struct. 2018, 168, 589–611. [Google Scholar] [CrossRef]
- El-Kashif, K.F.O.; Adly, A.K.; Abdalla, H.A. Finite element modeling of RC shear walls strengthened with CFRP subjected to cyclic loading. Alex. Eng. J. 2019, 58, 189–205. [Google Scholar] [CrossRef]
- Kolozvari, K.; Gullu, M.F.; Orakcal, K. Finite Element Modeling of Reinforced Concrete Walls Under Uni- and Multi-Directional Loading Using Opensees. J. Earthq. Eng. 2021, 26, 6524–6547. [Google Scholar] [CrossRef]
- Wu, Y.T.; Lan, T.Q.; Xiao, Y.; Yang, Y.B. Macro-Modeling of Reinforced Concrete Structural Walls: State-of-the-Art. J. Earthq. Eng. 2017, 21, 652–678. [Google Scholar] [CrossRef]
- Kolozvari, K.; Arteta, C.; Fischinger, M.; Gavridou, S.; Hube, M.; Isakovic, T.; Lowes, L.; Orakcal, K.; Vásquez, G.J.; Wallace, J. Comparative Study of State-of-the-Art Macroscopic Models for Planar Reinforced Concrete Walls. ACI Struct. J. 2018, 115, 1637–1657. [Google Scholar] [CrossRef]
- Goel, S.; Liao, W.; Bayat, M.; Chao, S. Performance-based plastic design (PBPD) method for earthquake-resistant structures: An overview. Struct. Des. Tall Spec. Build. 2010, 19, 115–137. [Google Scholar] [CrossRef]
- Kabeyasawa, T.; Shioara, H.; Otani, S. U.S.-Japan Cooperative Research on R/C Full-Scale Building Test, Part 5: Discussion of Dynamic Response System. In Proceedings of the Eighth World Conference on Earthquake Engineering, San Francisco, CA, USA, 21–28 July 1984; Volume 6, pp. 627–634. [Google Scholar]
- Vulcano, A.; Bertero, V.; Colotti, V. Analytical Modeling of R/C Structural Walls. In Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo/Kyoto, Japan, 2–9 August 1988; Volume 6. [Google Scholar]
- Vulcano, A. Macroscopic modeling for nonlinear analysis of RC structural walls. In Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings; CRC Press: Boca Raton, FL, USA, 1992; p. 10. [Google Scholar]
- Orakcal, K.; Wallace, J.; Conte, J. Nonlinear modeling and analysis of slender reinforced concrete walls. ACI Struct. J. 2004, 101, 688–698. [Google Scholar]
- Lu, X.; Chen, Y. Modeling of Coupled Shear Walls and Its Experimental Verification. J. Struct. Eng. 2005, 131, 75–84. [Google Scholar] [CrossRef]
- Orakcal, K.; Wallace, J. Flexural modeling of reinforced concrete walls—Experimental verification. ACI Struct. J. 2006, 103, 196–206. [Google Scholar]
- Rezapour, M.; Ghassemieh, M. Macroscopic modelling of coupled concrete shear wall. Eng. Struct. 2018, 169, 37–54. [Google Scholar] [CrossRef]
- Isakovic, T.; Fischinger, M. Assessment of a force–displacement based multiple-vertical-line element to simulate the non-linear axial–shear–flexure interaction behaviour of reinforced concrete walls. Bull. Earthq. Eng. 2019, 17, 6369–6389. [Google Scholar] [CrossRef]
- Kolozvari, K.; Orakcal, K.; Wallace, J.W. New opensees models for simulating nonlinear flexural and coupled shear-flexural behavior of RC walls and columns. Comput. Struct. 2018, 196, 246–262. [Google Scholar] [CrossRef]
- Kolozvari, K.; Orakcal, K.; Wallace, J.W. Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Structural Walls. I: Theory. J. Struct. Eng. 2015, 141, 04014135. [Google Scholar] [CrossRef]
- Kolozvari, K.; Tran, T.A.; Orakcal, K.; Wallace, J.W. Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Structural Walls. II: Experimental Validation. J. Struct. Eng. 2015, 141, 04014136. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, Y.; Duan, Y.; Du, G. The V-MVLE model for cyclic failure behavior simulation of planar RC members. Thin-Walled Struct. 2022, 181, 110159. [Google Scholar] [CrossRef]
- Esmaeiltabar, P.; Vaseghi, J.; Khosravi, H. Nonlinear macro modeling of slender reinforced concrete shear walls. Struct. Concr. 2019, 20, 899–910. [Google Scholar] [CrossRef]
- Fu, W. Macroscopic numerical model of reinforced concrete shear walls based on material properties. J. Intell. Manuf. 2021, 32, 1401–1410. [Google Scholar] [CrossRef]
- Solorzano, G.; Plevris, V. Computational intelligence methods in simulation and modeling of structures: A state-of-the-art review using bibliometric maps. Front. Built Environ. 2022, 8. [Google Scholar] [CrossRef]
- Plevris, V.; Lagaros, N.D. Artificial Intelligence (AI) Applied in Civil Engineering. Appl. Sci. 2022, 12, 7595. [Google Scholar] [CrossRef]
- Plevris, V.; Tsiatas, G.C. Computational Structural Engineering: Past Achievements and Future Challenges. Front. Built Environ. 2018, 4, 21. [Google Scholar] [CrossRef]
- Solorzano, G.; Plevris, V. ANN-based surrogate model for predicting the lateral load capacity of RC shear walls. In Proceedings of the ECCOMAS Congress 2022—8th European Congress on Computational Methods in Applied Sciences and Engineering, Oslo, Norway, 5–9 June 2022. [Google Scholar] [CrossRef]
- Lagaros, N.; Papadrakakis, M. Neural network based prediction schemes of the non-linear seismic response of 3D buildings. Adv. Eng. Softw. 2012, 44, 92–115. [Google Scholar] [CrossRef]
- Plevris, V.; Asteris, P.G. Modeling of Masonry Failure Surface under Biaxial Compressive Stress Using Neural Networks. Constr. Build. Mater. 2014, 55, 447–461. [Google Scholar] [CrossRef]
- Moayyeri, N.; Gharehbaghi, S.; Plevris, V. Cost-Based Optimum Design of Reinforced Concrete Retaining Walls Considering Different Methods of Bearing Capacity Computation. Mathematics 2019, 7, 1232. [Google Scholar] [CrossRef]
- Liu, J.; Xia, Y. A hybrid intelligent genetic algorithm for truss optimization based on deep neutral network. Swarm Evol. Comput. 2022, 73, 101120. [Google Scholar] [CrossRef]
- Solorzano, G.; Plevris, V. Optimum Design of RC Footings with Genetic Algorithms According to ACI 318–319. Buildings 2020, 10, 110. [Google Scholar] [CrossRef]
- Kallioras, N.; Kazakis, G.; Lagaros, N. Accelerated topology optimization by means of deep learning. Struct. Multidiscip. Optim. 2020, 62, 1185–1212. [Google Scholar] [CrossRef]
- Jung, J.; Yoon, K.; Lee, P.S. Deep learned finite elements. Comput. Methods Appl. Mech. Eng. 2020, 372, 113401. [Google Scholar] [CrossRef]
- Samaniego, E.; Anitescu, C.; Goswami, S.; Nguyen-Thanh, V.M.; Guo, H.; Hamdia, K.; Zhuang, X.; Rabczuk, T. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 2020, 362, 112790. [Google Scholar] [CrossRef]
- Kudela, J.; Matousek, R. Recent advances and applications of surrogate models for finite element method computations: A review. Soft Comput. 2022, 26, 13709–13733. [Google Scholar] [CrossRef]
- Mai, H.T.; Kang, J.; Lee, J. A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior. Finite Elem. Anal. Des. 2021, 196, 103572. [Google Scholar] [CrossRef]
- Abueidda, D.W.; Koric, S.; Sobh, N.A. Topology optimization of 2D structures with nonlinearities using deep learning. Comput. Struct. 2020, 237, 106283. [Google Scholar] [CrossRef]
- Linghu, J.; Dong, H.; Cui, J. Ensemble wavelet-learning approach for predicting the effective mechanical properties of concrete composite materials. Comput. Mech. 2022, 70, 335–365. [Google Scholar] [CrossRef]
- Lee, S.; Popovics, J. Applications of physics-informed neural networks for property characterization of complex materials. Rilem Tech. Lett. 2022, 7, 178–188. [Google Scholar] [CrossRef]
- Solorzano, G.; Plevris, V. Design of Reinforced Concrete Isolated Footings under Axial Loading with Artificial Neural Networks. In Proceedings of the 14th ECCOMAS Thematic Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control (EUROGEN 2021), Athens, Greece, 28–30 June 2021; pp. 118–131. [Google Scholar] [CrossRef]
- Ben Seghier, M.E.A.; Corriea, J.A.F.O.; Jafari-Asl, J.; Malekjafarian, A.; Plevris, V.; Trung, N.T. On the modeling of the annual corrosion rate in main cables of suspension bridges using combined soft computing model and a novel nature-inspired algorithm. Neural Comput. Appl. 2021, 33, 15969–15985. [Google Scholar] [CrossRef]
- McKenna, F.; Scott, M.H.; Fenves, G.L. Nonlinear Finite-Element Analysis Software Architecture Using Object Composition. JOurnal Comput. Civ. Eng. 2010, 24, 95–107. [Google Scholar] [CrossRef]
- Zhu, M.; McKenna, F.; Scott, M.H. OpenSeesPy: Python library for the OpenSees finite element framework. SoftwareX 2018, 7, 6–11. [Google Scholar] [CrossRef]
- Taucer, F.; Spacone, E.; Filippou, F. A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1991. [Google Scholar]
- Shah, S.P.; Swartz, S.E.; Ouyang, C. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Kent, D.C.; Park, R. Flexural Members with Confined Concrete. J. Struct. Div. 1971, 97, 1969–1990. [Google Scholar] [CrossRef]
- Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical Stress-Strain Model for Confined Concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- Bangash, M.Y.H. Concrete and Concrete Structures: Numerical Modelling and Applications; Elsevier Applied Science: London, UK, 1989. [Google Scholar]
- Menegotto, M. Method of Analysis of Cyclically Loaded RC Plane Frames including Changes in Geometry and Non-Elastic Behavior of Elements under Normal Force and Bending; ETH Zürich: Zürich, Schweiz, 1973; pp. 15–22. [Google Scholar]
- Filippou, F.C.; Popov, E.P.; Bertero, V.V. Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints; Technical Report; Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 1983. [Google Scholar]
- Xie, L.; Lu, X.; Lu, X.; Huang, Y.; Ye, L. Multi-Layer Shell Element for Shear Walls in OpenSees; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 1190–1197. ISBN 9780784413616. [Google Scholar] [CrossRef]
- Lu, X.; Xie, L.; Guan, H.; Huang, Y.; Lu, X. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elem. Anal. Des. 2015, 98, 14–25. [Google Scholar] [CrossRef]
- Guan, H.; Loo, Y.C. Flexural and Shear Failure Analysis of Reinforced Concrete Slabs and Flat Plates. Adv. Struct. Eng. 1997, 1, 71–85. [Google Scholar] [CrossRef]
- Hallinan, P.; Guan, H. Layered Finite Element Analysis of One-Way and Two-Way Concrete Walls with Openings. Adv. Struct. Eng. 2007, 10, 55–72. [Google Scholar] [CrossRef]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19); ACI: Farmington Hills, MI, USA, 2019. [Google Scholar]
- Lefas, I.; Kotsovos, M. Behavior of reinforced concrete structural walls. Strength, deformation characteristics, and failure mechanism. ACI Struct. J. 1990, 87, 23–31. [Google Scholar]
- Lu, X.; Zhou, Y.; Yang, J.; Qian, J.; Song, C.; Wang, Y. SLDRCE Database on Static Tests of Structural Members and Joint Assemblies—Shear Walls R11; Technical Report; Institute of Structural Engineering and Disaster Reduction, Tongji University: Shanghai, China, 2008. [Google Scholar]
- Petrone, F.; McKenna, F.; Do, T.; McCallen, D. A versatile numerical model for the nonlinear analysis of squat-to-tall reinforced-concrete shear walls. Eng. Struct. 2021, 242, 112406. [Google Scholar] [CrossRef]
- Blank, J.; Deb, K. pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org (accessed on 18 January 2022).
- Plevris, V.; Solorzano, G.; Bakas, N.; Seghier, M.E.A. Investigation of performance metrics in regression analysis and machine learning-based prediction models. In Proceedings of the ECCOMAS Congress 2022—8th European Congress on Computational Methods in Applied Sciences and Engineering, Oslo, Norway, 5–9 June 2022. [Google Scholar] [CrossRef]
n | Symbol | Lower Bound | Upper Bound | Description |
---|---|---|---|---|
1 | 25 | 60 | Concrete compressive strength [MPa] | |
2 | 380 | 600 | Reinforcing steel yield stress [MPa] | |
3 | h | 300 | 350 | Wall height [cm] |
4 | t | 12.5 | 40 | Wall thickness [cm] |
5 | 300 | Wall total length [cm] | ||
6 | 0.15 | 0.30 | BE length [cm] | |
7 | 0.01 | 0.05 | BE longitudinal reinforcement ratio | |
8 | 0.0075 | 0.02 | BE transversal reinforcement ratio | |
9 | 0.0025 | 0.75 | Web longitudinal reinforcement ratio | |
10 | 0.0025 | 0.75 | Web transversal reinforcement ratio | |
11 | 0.005 | 0.1 | Axial load ratio, |
Parameters | Wall Identifier | |||||||
---|---|---|---|---|---|---|---|---|
n | var. | Unit | A | B | C | D | E | F |
1 | MPa | 45.1 | 33.7 | 55 | 35 | 40 | 30 | |
2 | MPa | 530 | 462 | 580 | 420 | 558 | 400 | |
3 | h | cm | 320 | 335 | 342 | 320 | 340 | 330 |
4 | t | cm | 21 | 27 | 36 | 25 | 30 | 20 |
5 | cm | 187 | 242 | 165 | 200 | 275 | 160 | |
6 | cm | 41 | 48 | 40 | 50 | 68 | 40 | |
7 | - | 0.031 | 0.039 | 0.045 | 0.035 | 0.025 | 0.03 | |
8 | - | 0.0092 | 0.0102 | 0.0087 | 0.0075 | 0.006 | 0.0085 | |
9 | - | 0.011 | 0.009 | 0.013 | 0.0125 | 0.01 | 0.0095 | |
10 | - | 0.0078 | 0.0067 | 0.0091 | 0.005 | 0.0075 | 0.0060 | |
11 | - | 0.025 | 0.018 | 0.02 | 0.05 | 0.075 | 0.075 | |
1 | kN | 206 | 377 | 350 | 263 | 676 | 106 | |
2 | kN | 361 | 651 | 601 | 459 | 1184 | 190 | |
3 | kN | 605 | 1131 | 1071 | 790 | 2009 | 324 | |
4 | kN | 810 | 1447 | 1381 | 1047 | 2476 | 435 | |
5 | kN | 1086 | 2035 | 2101 | 1393 | 3357 | 601 | |
6 | kN | 1189 | 2177 | 2278 | 1501 | 3539 | 673 | |
7 | - | 1.65 | 1.47 | 1.57 | 1.63 | 1.27 | 1.51 | |
8 | - | 0.43 | 0.49 | 0.38 | 0.41 | 0.54 | 0.44 | |
9 | - | 4.65 | 4.63 | 3.44 | 3.32 | 4.81 | 4.15 |
Scenario | Error | Computational Efficiency | |||||
---|---|---|---|---|---|---|---|
MAE [kN] | Peak Force [kN] | Total % | FEM 8 × 10 [s] | FEM 12 × 15 [s] | DNN-MVLEM [s] | Speed Factor (8 × 10)/(12 × 15) | |
A | 37 | 1320 | 2.8 | 27 | 81 | 0.247 | 109/327 |
B | 109 | 2622 | 4.16 | 36 | 97 | 0.245 | 146/395 |
C | 107 | 2292 | 4.66 | 30 | 86 | 0.252 | 119/341 |
Averages | - | - | 3.87 | 31 | 88 | 0.248 | 125/355 |
Scenario | Error | Computational Efficiency | ||||
---|---|---|---|---|---|---|
MAE [kN] | Peak Force [kN] | Total % | FEM [s] | DNN-MVLEM [s] | Speed Factor | |
D | 50 | 1757 | 2.85 | 82 | 0.979 | 83 |
E | 62 | 1243 | 4.99 | 214 | 2.01 | 106 |
F | 24 | 889 | 2.70 | 1578 | 10.75 | 146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solorzano, G.; Plevris, V. DNN-MLVEM: A Data-Driven Macromodel for RC Shear Walls Based on Deep Neural Networks. Mathematics 2023, 11, 2347. https://doi.org/10.3390/math11102347
Solorzano G, Plevris V. DNN-MLVEM: A Data-Driven Macromodel for RC Shear Walls Based on Deep Neural Networks. Mathematics. 2023; 11(10):2347. https://doi.org/10.3390/math11102347
Chicago/Turabian StyleSolorzano, German, and Vagelis Plevris. 2023. "DNN-MLVEM: A Data-Driven Macromodel for RC Shear Walls Based on Deep Neural Networks" Mathematics 11, no. 10: 2347. https://doi.org/10.3390/math11102347
APA StyleSolorzano, G., & Plevris, V. (2023). DNN-MLVEM: A Data-Driven Macromodel for RC Shear Walls Based on Deep Neural Networks. Mathematics, 11(10), 2347. https://doi.org/10.3390/math11102347