Kuramoto Model with Delay: The Role of the Frequency Distribution
Abstract
1. Introduction
2. Model
3. Reduction of the Collective Dynamics
4. Studying the Role of the Coupling Delay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pikovsky, A.; Kurths, J.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2003; Volume 12. [Google Scholar]
- Strogatz, S.H. Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life; Hachette: London, UK, 2012. [Google Scholar]
- Winfree, A.T. The Geometry of Biological Time; Springer Science & Business Media: Berlin, Germany, 2013; Volume 12. [Google Scholar]
- Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, Kyoto, Japan, 23–29 January 1975; Springer: Berlin/Heidelberg, Germany, 1975; pp. 420–422. [Google Scholar]
- Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence; Springer: Berlin, Germany; New York, NY, USA, 1984; Volume 19, p. 156. [Google Scholar]
- Kuramoto, Y.; Nishikawa, I. Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities. J. Stat. Phys. 1987, 49, 569–605. [Google Scholar] [CrossRef]
- Wiesenfeld, K.; Colet, P.; Strogatz, S.H. Frequency locking in Josephson arrays: Connection with the Kuramoto model. Phys. Rev. E 1998, 57, 1563. [Google Scholar] [CrossRef][Green Version]
- Cumin, D.; Unsworth, C. Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Phys. D Nonlinear Phenom. 2007, 226, 181–196. [Google Scholar] [CrossRef]
- Breakspear, M.; Heitmann, S.; Daffertshofer, A. Generative models of cortical oscillations: Neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 2010, 4, 190. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Acebrón, J.A.; Bonilla, L.L.; Vicente, C.J.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137–185. [Google Scholar] [CrossRef][Green Version]
- Rodrigues, F.A.; Peron, T.K.D.M.; Ji, P.; Kurths, J. The Kuramoto model in complex networks. Phys. Rep. 2016, 610, 1–98. [Google Scholar] [CrossRef][Green Version]
- Smith, H. An Introduction to Delay Differential Equations with Applications to the Life Sciences; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Erneux, T. Applied Delay Differential Equations; Surveys and Tutorials in the Applied Mathematical Sciences; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 3, p. 204. [Google Scholar]
- Kashchenko, S.; Maiorov, V.V. Models of Wave Memory; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Schuster, H.G.; Wagner, P. Mutual Entrainment of Two Limit Cycle Oscillators with Time Delayed Coupling. Prog. Theor. Phys. 1989, 81, 939–945. [Google Scholar] [CrossRef][Green Version]
- Kashchenko, A.A. Multistability in a system of two coupled oscillators with delayed feedback. J. Differ. Eqs. 2019, 266, 562–579. [Google Scholar] [CrossRef]
- Yeung, M.K.S.; Strogatz, S.H. Time Delay in the Kuramoto Model of Coupled Oscillators. Phys. Rev. Lett. 1999, 82, 648–651. [Google Scholar] [CrossRef][Green Version]
- Choi, M.Y.; Kim, H.J.; Kim, D.; Hong, H. Synchronization in a system of globally coupled oscillators with time delay. Phys. Rev. E-Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 61, 371–381. [Google Scholar] [CrossRef][Green Version]
- Nakamura, Y.; Tominaga, F.; Munakata, T. Clustering behavior of time-delayed nearest-neighbor coupled oscillators. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1994, 49, 4849–4856. [Google Scholar] [CrossRef]
- Zanette, D.H. Propagating structures in globally coupled systems with time delays. Phys. Rev. E-Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 62, 3167–3172. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.O.; Ko, T.W.; Moon, H.T. Time-delayed spatial patterns in a two-dimensional array of coupled oscillators. Phys. Rev. Lett. 2002, 89, 154104. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Petkoski, S.; Spiegler, A.; Proix, T.; Aram, P.; Temprado, J.J.; Jirsa, V.K. Heterogeneity of time delays determines synchronization of coupled oscillators. Phys. Rev. E 2016, 94, 12209. [Google Scholar] [CrossRef] [PubMed][Green Version]
- D’Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I. Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos 2008, 18, 37116. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Laing, C.R. Travelling waves in arrays of delay-coupled phase oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 94802. [Google Scholar] [CrossRef]
- Peron, T.K.D.; Rodrigues, F.A. Explosive synchronization enhanced by time-delayed coupling. Phys. Rev. E 2012, 86, 16102. [Google Scholar] [CrossRef][Green Version]
- Shinomoto, S.; Kuramoto, Y. Phase Transitions in Active Rotator Systems. Prog. Theor. Phys. 1986, 75, 1105. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Shinomoto, S.; Kuramoto, Y. Phase transitions and their bifurcation analysis in a large population of active rotators with mean-field coupling. Prog. Theor. Phys. 1988, 79, 600–607. [Google Scholar] [CrossRef][Green Version]
- Arenas, A.; Vicente, C.J.P. Exact long-time behavior of a network of phase oscillators under random fields. Phys. Rev. E 1994, 50, 949. [Google Scholar] [CrossRef][Green Version]
- Antonsen, T.M., Jr.; Faghih, R.T.; Girvan, M.; Ott, E.; Platig, J. External periodic driving of large systems of globally coupled phase oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2008, 18, 37112. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lafuerza, L.F.; Colet, P.; Toral, R. Nonuniversal results induced by diversity distribution in coupled excitable systems. Phys. Rev. Lett. 2010, 105, 084101. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Klinshov, V.; Franovic, I.; Franović, I. Two scenarios for the onset and suppression of collective oscillations in heterogeneous populations of active rotators. Phys. Rev. E 2019, 100, 062211. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Petkoski, S.; Stefanovska, A. Kuramoto model with time-varying parameters. Phys. Rev. E 2012, 86, 46212. [Google Scholar] [CrossRef][Green Version]
- Khatiwada, D.R. Numerical Solution of Finite Kuramoto Model with Time-Dependent Coupling Strength: Addressing Synchronization Events of Nature. Mathematics 2022, 10, 3633. [Google Scholar] [CrossRef]
- Timms, L.; English, L.Q. Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity. Phys. Rev. E 2014, 89, 32906. [Google Scholar] [CrossRef][Green Version]
- Ha, S.Y.; Noh, S.E.; Park, J. Synchronization of Kuramoto oscillators with adaptive couplings. SIAM J. Appl. Dyn. Syst. 2016, 15, 162–194. [Google Scholar] [CrossRef]
- Kasatkin, D.V.; Nekorkin, V.I. Dynamics of the Phase Oscillators with Plastic Couplings. Radiophys. Quantum Electron. 2016, 58, 877–891. [Google Scholar] [CrossRef]
- Kasatkin, D.V.; Yanchuk, S.; Schöll, E.; Nekorkin, V.I. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings. Phys. Rev. E 2017, 96, 062211. [Google Scholar] [CrossRef]
- Feketa, P.; Schaum, A.; Meurer, T. Stability of cluster formations in adaptive Kuramoto networks. IFAC-Pap. 2021, 54, 14–19. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, T.; Ding, S.; Bao, H.; Li, Z.; Chen, B. Extreme multistability and phase synchronization in a heterogeneous bi-neuron Rulkov network with memristive electromagnetic induction. Cogn. Neurodyn. 2022, 1–12. [Google Scholar] [CrossRef]
- Zaks, M.A.; Neiman, A.B.; Feistel, S.; Schimansky-Geier, L. Noise-controlled oscillations and their bifurcations in coupled phase oscillators. Phys. Rev. E 2003, 68, 66206. [Google Scholar] [CrossRef]
- Komarov, M.; Pikovsky, A. The Kuramoto model of coupled oscillators with a bi-harmonic coupling function. Phys. D Nonlinear Phenom. 2014, 289, 18–31. [Google Scholar] [CrossRef][Green Version]
- O’Keeffe, K.P.; Strogatz, S.H. Dynamics of a population of oscillatory and excitable elements. Phys. Rev. E 2016, 93, 62203. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Canavier, C.C.; Tikidji-Hamburyan, R.A. Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling. Phys. Rev. E 2017, 95, 032215. [Google Scholar] [CrossRef][Green Version]
- Klinshov, V.; Lücken, L.; Yanchuk, S. Desynchronization by phase slip patterns in networks of pulse-coupled oscillators with delays: Desynchronization by phase slip patterns. Eur. Phys. J. Spec. Top. 2018, 227, 1117–1128. [Google Scholar] [CrossRef]
- Fiori, S. A control-theoretic approach to the synchronization of second-order continuous-time dynamical systems on real connected Riemannian manifolds. SIAM J. Control Optim. 2020, 58, 787–813. [Google Scholar] [CrossRef]
- Markdahl, J.; Thunberg, J.; Goncalves, J. High-dimensional Kuramoto models on Stiefel manifolds synchronize complex networks almost globally. Automatica 2020, 113, 108736. [Google Scholar] [CrossRef][Green Version]
- Cafaro, A.D.; Fiori, S. Optimization of a control law to synchronize first-order dynamical systems on Riemannian manifolds by a transverse component. Discret. Contin. Dyn.-Syst.-Ser. B 2022, 27, 3947–3969. [Google Scholar] [CrossRef]
- Ott, E.; Antonsen, T.M. Low dimensional behavior of large systems of globally coupled oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2008, 18, 37113. [Google Scholar] [CrossRef][Green Version]
- Ott, E.; Antonsen, T.M. Long time evolution of phase oscillator systems. Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 23117. [Google Scholar] [CrossRef] [PubMed]
- Klinshov, V.; Kirillov, S.; Nekorkin, V. Reduction of the collective dynamics of neural populations with realistic forms of heterogeneity. Phys. Rev. E 2021, 103, L040302. [Google Scholar] [CrossRef]
- Pyragas, V.; Pyragas, K. Mean-field equations for neural populations with q -Gaussian heterogeneities. Phys. Rev. E 2022, 105, 044402. [Google Scholar] [CrossRef] [PubMed]
- Kuramoto, Y. Proceedings of the International symposium on Mathematical Problems in Theoretical Physics. Lect. Notes Phys. 1975, 30, 420–422. [Google Scholar]
- Yanchuk, S.; Perlikowski, P. Delay and periodicity. Phys. Rev. E 2009, 79, 1–9. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory; Springer: New York, NY, USA, 2004. [Google Scholar]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 42. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klinshov, V.V.; Zlobin, A.A. Kuramoto Model with Delay: The Role of the Frequency Distribution. Mathematics 2023, 11, 2325. https://doi.org/10.3390/math11102325
Klinshov VV, Zlobin AA. Kuramoto Model with Delay: The Role of the Frequency Distribution. Mathematics. 2023; 11(10):2325. https://doi.org/10.3390/math11102325
Chicago/Turabian StyleKlinshov, Vladimir V., and Alexander A. Zlobin. 2023. "Kuramoto Model with Delay: The Role of the Frequency Distribution" Mathematics 11, no. 10: 2325. https://doi.org/10.3390/math11102325
APA StyleKlinshov, V. V., & Zlobin, A. A. (2023). Kuramoto Model with Delay: The Role of the Frequency Distribution. Mathematics, 11(10), 2325. https://doi.org/10.3390/math11102325