Mathematics in Finite Element Modeling of Computational Friction Contact Mechanics 2021–2022
Abstract
1. Introduction
2. Statistics of this Special Issue
3. Brief Overview of the Contributions to this Special Issue
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vlase, S.; Nastac, C.; Marin, M.; Mihalcica, M. A Method for the Study of the Vibration of Mechanical Bars Systems with Symmetries. ACTA Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2017, 60, 539–544. [Google Scholar]
- Scutaru, M.L.; Vlase, S.; Marin, M.; Modrea, A. New analytical method based on dynamic response of planar mechanical elastic systems. Bound. Value Probl. 2020, 1, 104. [Google Scholar] [CrossRef]
- Marin, M.; Ellahi, R.; Vlase, S.; Bhatti, M.M. On the decay of exponential type for the solutions in a dipolar elastic body. J. Taibah Univ. Sci. 2020, 14, 534–540. [Google Scholar] [CrossRef]
- Vlase, S.; Marin, M.; Scutaru, M.L.; Munteanu, R. Coupled transverse and torsional vibrations in a mechanical system with two identical beams. AIP Adv. 2017, 7, 065301. [Google Scholar] [CrossRef]
- Vlase, S.; Marin, M.; Ochsner, A. Considerations of the transverse vibration of a mechanical system with two identical bars. Proc. Inst. Mech. Engineers. Part L J. Mater. Des. Appl. 2019, 233, 1318–1323. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Marin, M. The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 2020, 8, 1128. [Google Scholar] [CrossRef]
- Marin, M.; Chirila, A.; Othman, M.I.A. An extension of Dafermos’s results for bodies with a dipolar structure. Appl. Math. Comput. 2019, 361, 680–688. [Google Scholar] [CrossRef]
- Marin, M.; Chirila, A.; Oechsner, A.; Vlase, S. About finite energy solutions in thermoelasticity of micropolar bodies with voids. Bound. Value Probl. 2019, 2019, 89. [Google Scholar] [CrossRef]
- Ungureanu, M.; Medan, N.; Ungureanu, N.S.; Pop, N.; Nadolny, K. Tribological Aspects Concerning the Study of Overhead Crane Brakes. Materials 2022, 15, 6549. [Google Scholar] [CrossRef]
- Stanciu, M.D.; Vlase, S.; Marin, M. Vibration Analysis of a Guitar considered as a Symmetrical Mechanical System. Symmetry 2019, 11, 727. [Google Scholar] [CrossRef]
- Pop, N. A Finite Element Solution for a Three-dimensional Quasistatic Frictional Contact Problem. Rev. Roum. Des Sci. Tech. Ser. Mec. Appliq. Ed. De L’academie Roum. 1997, 42, 1–2. [Google Scholar]
- Trivedi, N.; Das, S.; Craciun, E.-M. The Mathematical Study of an Edge Crack in Two Different Specified Models under Time-Harmonic Wave Disturbance. Mech. Compos. Mater. 2022, 58, 1–14. [Google Scholar] [CrossRef]
- Saeed, T. Generalized Thermoelastic Interactions in an Infinite Viscothermoelastic Medium under the Nonlocal Thermoelastic Model. Mathematics 2022, 10, 4425. [Google Scholar] [CrossRef]
- Száva, I.R.; Sova, D.; Peter, D.; Élesztós, P.; Száva, I.; Vlase, S. Experimental Validation of Model Heat Transfer in Rectangular Hole Beams Using Modern Dimensional Analysis. Mathematics 2022, 10, 409. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Marin, M.; Askar, S.S. Thermo-Optical MechanicalWaves in a Rotating Solid Semiconductor Sphere Using the Improved Green–Naghdi III Model. Mathematics 2021, 9, 2902. [Google Scholar] [CrossRef]
- Hobiny, A.D.; Abbas, I.A. Finite Element Analysis of Thermal-Diffusions Problem for Unbounded Elastic Medium Containing Spherical Cavity under DPL Model. Mathematics 2021, 9, 2782. [Google Scholar] [CrossRef]
- Marin, M.; Vlase, S.; Fudulu, I.; Precup, G. Effect of Voids and Internal State Variables in Elasticity of Porous Bodies with Dipolar Structure. Mathematics 2021, 9, 2741. [Google Scholar] [CrossRef]
- Marin, M.; Hobiny, A.; Abbas, I. The Effects of Fractional Time Derivatives in Porothermoelastic Materials Using Finite Element Method. Mathematics 2021, 9, 1606. [Google Scholar] [CrossRef]
- Marin, M.; Hobiny, A.; Abbas, I. Finite Element Analysis of Nonlinear Bioheat Model in Skin Tissue Due to External Thermal Sources. Mathematics 2021, 9, 1459. [Google Scholar] [CrossRef]
- Pop, N.; Ungureanu, M.; Pop, A.I. An Approximation of Solutions for the Problem with Quasistatic Contact in the Case of Dry Friction. Mathematics 2021, 9, 904. [Google Scholar] [CrossRef]
- Vlase, S.; Marin, M.; Scutaru, M.L.; Pruncu, C. Vibration Response of a Concrete Structure with Repetitive Parts Used in Civil Engineering. Mathematics 2021, 9, 490. [Google Scholar] [CrossRef]
- An, D.; Huang, W.; Liu, W.; Xiao, J.; Liu, X.; Liang, Z. Meshing Drive Mechanism of Double TravelingWaves for Rotary Piezoelectric Motors. Mathematics 2021, 9, 445. [Google Scholar] [CrossRef]
Country | Number of Authors |
---|---|
Romania | 12 |
Saudi Arabia | 3 |
China | 6 |
UK | 1 |
Egypt | 2 |
Slovakia | 1 |
Total | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pop, N.; Marin, M.; Vlase, S. Mathematics in Finite Element Modeling of Computational Friction Contact Mechanics 2021–2022. Mathematics 2023, 11, 255. https://doi.org/10.3390/math11010255
Pop N, Marin M, Vlase S. Mathematics in Finite Element Modeling of Computational Friction Contact Mechanics 2021–2022. Mathematics. 2023; 11(1):255. https://doi.org/10.3390/math11010255
Chicago/Turabian StylePop, Nicolae, Marin Marin, and Sorin Vlase. 2023. "Mathematics in Finite Element Modeling of Computational Friction Contact Mechanics 2021–2022" Mathematics 11, no. 1: 255. https://doi.org/10.3390/math11010255
APA StylePop, N., Marin, M., & Vlase, S. (2023). Mathematics in Finite Element Modeling of Computational Friction Contact Mechanics 2021–2022. Mathematics, 11(1), 255. https://doi.org/10.3390/math11010255