On Harmonic Complex Balancing Numbers
Abstract
:1. Introduction
2. The Harmonic Complex Balancing Numbers
3. On Symmetric Matrices and the Harmonic Complex Balancing Numbers
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horadam, A.F. Generating Functions for Powers of A Certain Generalised Sequence of Numbers. Duke Math. J. 1965, 68, 437–446. [Google Scholar] [CrossRef]
- Al-Kateeb, A. A generalization of Jacobsthal and Jacobsthal-Lucas numbers. JJMS 2021, 14, 467–481. [Google Scholar]
- Trojnar-Spelina, L.; Wloch, I. On generalized Pell and Pell-Lucas numbers. Iran J. Sci Technol. Trans. Sci. 2019, 43, 2871–2877. [Google Scholar] [CrossRef] [Green Version]
- Falcon, S.; Plaza, A. On the Fibonacci k-numbers. Chaos Solitons Fractals 2007, 32, 1615–1624. [Google Scholar] [CrossRef]
- Yilmaz, F.; Bozkurt, D. The generalized order-k Jacobsthal numbers. Int. J. Contemp. Math. Sci. 2009, 4, 1685–1694. [Google Scholar]
- Behera, A.; Panda, G.K. On the square roots of triangular numbers. Fibonacci Q. 1999, 37, 98–105. [Google Scholar]
- Panda, G.K. Some fascinating properties of balancing numbers. Fibonacci Numbers Their Appl. 2009, 194, 185–189. [Google Scholar]
- Berczes, A.; Liptai, K.; Pink, I. On generalized balancing numbers. Fibonacci Q. 2010, 48, 121–128. [Google Scholar]
- Olajos, P. Properties of balancing, cobalancing and generalized balancing numbers. Ann. Math. Et Inform. 2010, 37, 125–138. [Google Scholar]
- Panda, G.K.; Rout, S.S. Gap balancing numbers. Fibonacci Q. 2013, 51, 239–248. [Google Scholar]
- Ray, P.K. Curious congruences for balancing numbers. Int. J. Contemp. Sci. 2012, 7, 881–889. [Google Scholar]
- Ray, P.K. Application of Chebyshev polynomials in factorization of balancing and Lucas-balancing numbers. Bol. Soc. Parana. Mat. 2012, 30, 49–56. [Google Scholar]
- Ray, P.K. Factorization of negatively subscripted balancing and Lucas-balancing numbers. Bol. Da Sociedade Parana. Mat. 2013, 31, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Kar, K.; Yılmaz, F. On linear algebra of balance-binomial graphs. Discret. Appl. Math. 2018, 243, 290–296. [Google Scholar] [CrossRef]
- Aşçı, M.; Aydınyüz, S. On Gaussian Balancing and Gaussian Cobalancing Quaternions. Turk. J. Math. Comput. Sci. 2021, 13, 174–181. [Google Scholar]
- Carlitz, L. Weighted Stirling numbers of the first and second kind. I. Fibonacci Q. 1980, 18, 147–162. [Google Scholar]
- Bahsi, M.; Solak, S. On the matrices with Harmonic numbers. Gazi Univ. J. Sci. 2010, 23, 445–448. [Google Scholar]
- Bahsi, M. On the norms of r-circulant matrices with the hyper Harmonic numbers. J. Math. Inequalities 2016, 10, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Tuglu, N.; Kizilates, C.; Kesim, S. On the harmonic and hyperharmonic Fibonacci numbers. Adv. Differ. Equations 2015, 51, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.; Knuth, D.; Patashnik, K. Concrete Mathematics; Addison-Wesley: Boston, MA, USA, 1989; Volume 10. [Google Scholar]
- Karaca, E.; Yılmaz, F. An introduction to harmonic complex numbers and harmonic hybrid Fibonacci numbers: A unified approach. Notes Number Theory Discret. Math. 2022, 3, 542–557. [Google Scholar] [CrossRef]
- Karaca, E.; Yılmaz, F. Some characterizations for harmonic complex Fibonacci sequences. In Springer Proceedings, II, Proceedings of the International Conference on Mathematics and its Applications in Science and Engineering, Salamanca University, Salamanca, Spain, 1–2 July 2021; Springer: Cham, Switzerland, 2022; pp. 159–165. [Google Scholar]
- Petroudi, S.H.J.; Pirouz, B. A particular matrix, its inversion and some norms. Appl. Comput. Math. 2015, 4, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Horn, R.A. The hadamard product. Proc. Symp. Appl. Math. 1990, 40, 87–169. [Google Scholar]
- Petroudi, S.H.J.; Pirouz, M.; Akbıyık, M.; Yılmaz, F. Some Special Matrices with Harmonic Numbers. Konuralp J. Math. 2022, 10, 188–196. [Google Scholar]
- Yamaç Akbiyik, S.; Akbiyik, M.; Yilmaz, F. One Type of symmetric matrix with harmonic Pell entries, its inversion, permanents and some norms. Mathematics 2021, 9, 539. [Google Scholar] [CrossRef]
- Harman, C.J. Complex Fibonacci numbers. Fibonacci Q. 1981, 19, 82–86. [Google Scholar]
- Solak, S.; Bahşi, M. On the norms of circulant matrices with the complex Fibonacci and Lucas numbers. Gazi Univ. J. Sci. 2016, 29, 487–490. [Google Scholar]
n | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
n | Det (for Is Rounded Off to Four Decimal Places) |
---|---|
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yılmaz, F.; Ertaş, A.; Jia, J. On Harmonic Complex Balancing Numbers. Mathematics 2023, 11, 210. https://doi.org/10.3390/math11010210
Yılmaz F, Ertaş A, Jia J. On Harmonic Complex Balancing Numbers. Mathematics. 2023; 11(1):210. https://doi.org/10.3390/math11010210
Chicago/Turabian StyleYılmaz, Fatih, Aybüke Ertaş, and Jiteng Jia. 2023. "On Harmonic Complex Balancing Numbers" Mathematics 11, no. 1: 210. https://doi.org/10.3390/math11010210
APA StyleYılmaz, F., Ertaş, A., & Jia, J. (2023). On Harmonic Complex Balancing Numbers. Mathematics, 11(1), 210. https://doi.org/10.3390/math11010210