Next Article in Journal
Numerical Modeling and Investigation of Fault-Induced Water Inrush Hazard under Different Mining Advancing Directions
Previous Article in Journal
Constructing Exact and Approximate Diffusion Wave Solutions for a Quasilinear Parabolic Equation with Power Nonlinearities
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Lower Bound for the Generalized Elliptic Integral of the First Kind

Department of Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
Mathematics 2022, 10(9), 1560; https://doi.org/10.3390/math10091560
Submission received: 31 March 2022 / Revised: 20 April 2022 / Accepted: 29 April 2022 / Published: 5 May 2022
(This article belongs to the Section Engineering Mathematics)

Abstract

:
In this paper, we obtain a new simple rational approximation for K a ( r ) : the inequality 2 K a ( r ) / π > g 2 r / g 1 r holds for all r ( 0 , 1 ) , where K a ( r ) is the generalized elliptic integral of the first kind, r = 1 r 2 , g 1 r and g 2 r are specific primary and quadratic polynomials about r , respectively. In particular, when a is taken as 1/2, 1/3, 1/4, 1/5 and 1/6 respectively, we can obtain some new specific lower bounds of the corresponding functions.

1. Introduction

For r ( 0 , 1 ) , a ( 0 , 1 ) , and r = 1 r 2 , the generalized elliptic integral of the first kind (see [1], Section 5.5) is defined by
K a K a ( r ) = π 2 F a , 1 a ; 1 ; r 2 , K a ( 0 + ) = π / 2 , K a ( 1 ) = ,
which can be expressed as a power series
K a ( r ) = π 2 n = 0 a n 1 a n ( n ! ) 2 r 2 n ,
where a 0 = 1 for a 0 , ( a ) n a ( a + 1 ) ( a + 2 ) ( a + n 1 ) = Γ a + n / Γ a is the shifted factorial function (or Pochhammer symbol) and Γ x = 0 t x 1 e t d t x > 0 is the gamma function (see [1,2,3]). In 2000, this special function was rediscovered by [4], in which the relationships between the modular function and the generalized elliptic integrals were revealed. In this way, the role of the generalized elliptic integrals in the field of geometric function theory is prominent. Of course, we know that the generalized elliptic integral of the first kind K a ( r ) cannot be expressed by elementary function, and the simple and accurate estimation for K a ( r ) becomes more and more urgent. In the particular case a = 1 / 2 , the function K a ( r ) reduces to K ( r ) , the well-known complete elliptic integral of the first kind:
K ( r ) = 0 π / 2 d t 1 r 2 sin 2 ( t ) ,
which is the particular case of the Gaussian hypergeometric function can be a special power series [5,6,7,8,9,10,11]:
K ( r ) = π 2 F 1 2 , 1 2 ; 1 ; r 2 = π 2 n = 0 1 2 n 2 ( n ! ) 2 r 2 n = π 2 n = 0 ( 2 n 1 ) ! ! ( 2 n ) ! ! 2 r 2 n .
Many researchers have obtained some results about this special function K a ( r ) (see [12,13,14,15,16]). In [15], the upper and lower bounds for K a ( r ) were shown, and a double inequality was proved as follows:
1 + α ( r ) 2 < K a ( r ) sin π a log e R ( a ) / 2 / r < 1 + β ( r ) 2
holds for all a ( 0 , 1 / 2 ] and r ( 0 , 1 ) if and only if α π / [ R ( a ) sin ( π a ) ] 1 and β a 1 a , where R ( x ) is the Ramanujan constant function (see [17]). When a = 1 / 2 , the above inequality becomes the following estimation of the function K ( r ) :
A ( r ) = : 1 + π 4 log 2 1 ( r ) 2 log ( 4 / r ) < K ( r ) < 1 + 1 4 ( r ) 2 log ( 4 / r ) .
Recently, in [18], the author has shown a new concise bound for K a ( r ) by a rational function of the arugment r and obtained an inequality as follows.
Proposition 1.
Let a ( 0 , 1 ) , r ( 0 , 1 ) , and r = 1 r 2 . Then
2 π K a ( r ) > 1 3 a + 3 a 2 r + 1 + 3 a 3 a 2 1 + a a 2 r + 1 a + a 2 = : G 1 , 1 ( r ) .
The aim of this paper is to provide a better lower bound for K a ( r ) and to obtain the following result.
Theorem 1.
Let a ( 0 , 1 ) , r ( 0 , 1 ) , r = 1 r 2 , and
u 1 ( a ) = 2 a 4 a 2 + 4 a 3 2 a 4 + 3 , v 1 ( a ) = 7 a 5 a 2 4 a 3 + 2 a 4 + 6 , u 2 ( a ) = 17 a + 3 a 2 35 a 3 + 5 a 4 + 15 a 5 5 a 6 + 3 , v 2 ( a ) = 5 a 19 a 2 + 38 a 3 + 6 a 4 30 a 5 + 10 a 6 + 6 , w 2 ( a ) = 3 a 7 a 2 + 3 a 3 + 11 a 4 15 a 5 + 5 a 6 .
Then
2 π K a ( r ) > u 2 ( a ) + v 2 ( a ) r w 2 ( a ) r 2 u 1 ( a ) + v 1 ( a ) r = : G 2 , 1 ( r ) .
It is not hard to find out that
G 2 , 1 ( r ) G 1 , 1 ( r ) = a 1 a 1 + a a 2 3 4 a a 2 + 10 a 3 5 a 4 u 1 ( a ) + v 1 ( a ) r 1 + a a 2 r + 1 a + a 2 1 r 3 > 0
due to
1 + a a 2 = 1 + a 1 a > 0 , 3 4 a a 2 + 10 a 3 5 a 4 = 27 16 + 1 16 20 a 1 a + 21 2 a 1 2 > 0 .
On the other hand, we compute to obtain that
2 π K a ( r ) G 2 , 1 ( r ) = 1 5184 a 1 a 2 a 1 + a 9 + 3 a 20 a 2 + 27 a 3 + 4 a 4 21 a 5 + 7 a 6 1 + a a 2 r 8 + O r 10 , 2 π K a ( r ) G 1 , 1 ( r ) = 1 288 a 1 a 10 a 4 + 20 a 3 2 a 2 8 a + 6 r 6 + O r 8 .
The above two aspects illustrate the fact that G 2 , 1 ( r ) is sharper than G 1 , 1 ( r ) as the lower bound of 2 K a ( r ) / π , and the approximation accuracy of G 2 , 1 ( r ) and 2 K a ( r ) / π is higher than that of G 1 , 1 ( r ) and 2 K a ( r ) / π . Letting a = 1 / 2 , 1 / 3 , 1 / 4 , 1 / 5 and 1 / 6 in the above theorem, respectively, we immediately draw the following corollaries.
Corollary 1.
Let r ( 0 , 1 ) and r = 1 r 2 . Then
K 1 / 2 ( r ) K ( r ) > π 2 22 r 3 ( r ) 2 + 61 8 7 r + 3 = : B ( r ) .
Corollary 2.
Let r ( 0 , 1 ) and r = 1 r 2 . Then
K 1 / 3 ( r ) > π 2 2620 r 302 ( r ) 2 + 5701 9 620 r + 271 .
Corollary 3.
Let r ( 0 , 1 ) and r = 1 r 2 . Then
K 1 / 4 ( r ) > π 2 1890 r 177 ( r ) 2 + 3151 32 105 r + 47 .
Corollary 4.
Let r ( 0 , 1 ) and r = 1 r 2 . Then
K 1 / 5 ( r ) > π 2 1578 r 124 ( r ) 2 + 2171 5 498 r + 227 .
Corollary 5.
Let r ( 0 , 1 ) and r = 1 r 2 . Then
K 1 / 6 ( r ) > π 2 224 686 r 15 215 ( r ) 2 + 268 753 72 4543 r + 2099 .
It must be pointed out that the lower bound for the function K a ( r ) given in this paper is concise and accurate. In order to express this advantage, we especially list the following two absolute error tables, one is the error table between the function K 1 / 2 ( r ) K ( r ) and the lower bound B ( r ) given in this paper, and the other is the error table between the lower bound B ( r ) given in this paper and the one A ( r ) given in [17]. The latter shows the fact that the lower bound B ( r ) for K ( r ) is better than the one A ( r ) on large interval 0 , 0.896 while the opposite is true on the small interval 0.897 , 1 .
r 0.2 0.4 0.6 0.8 0.9
K ( r ) B ( r ) 9.264 × 10 8 1.0829 × 10 6 4.6501 × 10 5 1.2589 × 10 3 7.2937 × 10 3
r 0.2 0.4 0.6 0.8960.8970.9
B ( r ) A ( r ) 4.3276 × 10 4 1.8001 × 10 3 4.1813 × 10 3 2.2286 × 10 5 1.5716 × 10 4 7.2626 × 10 4
This paper does not find a concise upper bound for K a ( r ) , which is the lack of this paper and the direction of our future research.

2. Lemmas

In order to prove our main results, we need following lemmas.
Lemma 1.
Let a 0 , 1 . Then
p 1 ( a ) = 320 a 16 2560 a 15 12358 a 14 + 131306 a 13 + 47912 a 12 2110930 a 11 + 2431366 a 10 + 10627888 a 9 24415064 a 8 + 4758790 a 7 + 30676747 a 6 34613219 a 5 + 6595332 a 4 + 14044275 a 3 6691680 a 2 1468125 a + 850500 , p 2 ( a ) = 160 a 8 640 a 7 + 1181 a 6 1303 a 5 + 926 a 4 427 a 3 962 a 2 + 1065 a + 630 , p 3 ( a ) = 5 a a 2 8 a 3 + 4 a 4 + 3 3 a 20 a 2 + 27 a 3 + 4 a 4 21 a 5 + 7 a 6 + 9 , p 4 ( a ) = 64 a 12 + 384 a 11 + 91 a 10 3975 a 9 + 6627 a 8 + 1566 a 7 10 967 a 6 + 6501 a 5 + 2387 a 4 3720 a 3 99 a 2 + 1269 a + 405 , p 5 ( a ) = 24 a 14 168 a 13 374 a 12 + 4428 a 11 3226 a 10 28464 a 9 + 56916 a 8 1308 a 7 80278 a 6 + 69948 a 5 287 a 4 32610 a 3 + 8595 a 2 + 6804 a + 405 ,
and
q 0 ( a ) = 11750400 a 18 105753600 a 17 414880920 a 16 + 5716128960 a 15 22946263740 a 14 + 52201803780 a 13 50419694970 a 12 84859350840 a 11 + 345782467890 a 10 473759668260 a 9 + 207934633170 a 8 + 326470029120 a 7 499680890010 a 6 + 73459525860 a 5 + 239504763330 a 4 128601169560 a 3 45687166290 a 2 + 55393735680 a + 18631140480 , q 1 ( a ) = 7355520 a 18 66199680 a 17 460485396 a 16 + 5184409248 a 15 20094499782 a 14 + 44682495354 a 13 38298994641 a 12 95681011932 a 11 + 351060807177 a 10 484747863318 a 9 + 228437739261 a 8 + 326235974616 a 7 529181029413 a 6 + 96006877038 a 5 + 247228800669 a 4 149141453148 a 3 45535993317 a 2 + 64363071744 a + 21076451424 , q 2 ( a ) = 1820640 a 18 16385760 a 17 202237032 a 16 + 1989306816 a 15 7439602170 a 14 + 15964408950 a 13 10768123071 a 12 47586780516 a 11 + 156419035635 a 10 215734933230 a 9 + 106769231949 a 8 + 142465947240 a 7 242127573681 a 6 + 51761145432 a 5 + 110150008335 a 4 74410069662 a 3 19469546451 a 2 + 32234346576 a + 10304154018 ,
q 3 ( a ) = 222640 a 18 2003760 a 17 46593592 a 16 + 418167296 a 15 1501328128 a 14 + 3032404256 a 13 1037284638 a 12 13580494252 a 11 + 39972088993 a 10 54555595847 a 9 + 27792888997 a 8 + 35530299826 a 7 62535737692 a 6 + 15321758146 a 5 + 27649917354 a 4 20919117537 a 3 4649493582 a 2 + 9109901520 a + 2848107501 , q 4 ( a ) = 13440 a 18 120960 a 17 6150472 a 16 + 51945536 a 15 176449004 a 14 + 316499988 a 13 + 118174802 a 12 2424383888 a 11 + 6410969255 a 10 8576271881 a 9 + 4410075650 a 8 + 5538352566 a 7 9972614216 a 6 + 2752273964 a 5 + 4272836978 a 4 3632097435 a 3 674968491 a 2 + 1591914168 a + 487415637 ,
q 5 ( a ) = 320 a 18 2880 a 17 467856 a 16 + 3808128 a 15 11760928 a 14 + 15455776 a 13 + 41621888 a 12 276537952 a 11 + 661130866 a 10 858496122 a 9 + 436434583 a 8 + 552928736 a 7 1005339808 a 6 + 309195430 a 5 + 415612463 a 4 399454548 a 3 60507162 a 2 + 176379066 a + 52940871 , q 6 ( a ) = 19040 a 16 + 152320 a 15 373208 a 14 53144 a 13 + 4544644 a 12 19646432 a 11 + 42827192 a 10 53461732 a 9 + 26236688 a 8 + 34556840 a 7 62537458 a 6 + 21302234 a 5 + 24791703 a 4 27209088 a 3 3225393 a 2 + 12113874 a + 3566997 ,
q 7 ( a ) = 320 a 16 + 2560 a 15 1024 a 14 37632 a 13 + 233248 a 12 793792 a 11 + 1593832 a 10 1894696 a 9 + 871444 a 8 + 1237344 a 7 2192896 a 6 + 825160 a 5 + 826276 a 4 1050528 a 3 90936 a 2 + 471960 a + 136404 , q 8 ( a ) = 160 a 14 1120 a 13 + 4752 a 12 13952 a 11 + 26096 a 10 29280 a 9 + 12128 a 8 + 19456 a 7 33144 a 6 + 13784 a 5 + 11716 a 4 17616 a 3 972 a 2 + 7992 a + 2268
are all positive.
Proof. 
Due to the similarity of methods, we only take the positive definite proofs of two functions q 0 ( a ) and q 6 ( a ) , which are the most representative of all functions, as the examples for the proofs of other functions.
Let a 1 / 2 2 = t . Then 0 t < 1 / 4 and
q 0 ( a ) = 254072971474335 8192 34837458958305 1024 a 1 2 2 27049849283385 256 a 1 2 4 + 12290616417015 64 a 1 2 6 473696824275 8 a 1 2 8 207114049035 4 a 1 2 10 + 27734907465 a 1 2 12 + 736483860 a 1 2 14 864333720 a 1 2 16 + 11750400 a 1 2 18
= 254072971474335 8192 34837458958305 1024 t 27049849283385 256 t 2 + 12290616417015 64 t 3 473696824275 8 t 4 207114049035 4 t 5 + 27734907465 t 6 + 736483860 t 7 864333720 t 8 + 11750400 t 9
= 18631140480 55393735680 t 1 4 + 9706569390 t 1 4 2 + 109188030780 t 1 4 3 97765898400 t 1 4 4 9960024600 t 1 4 5 + 27526592610 t 1 4 6 965745180 t 1 4 7 837895320 t 1 4 8 + 11750400 t 1 4 9
= 18631140480 + 55393735680 t 1 4 + 109188030780 t 1 4 3 + 9706569390 t 1 4 2 97765898400 t 1 4 4 + 9960024600 t 1 4 5 + 27526592610 t 1 4 6 + 965745180 t 1 4 7 837895320 t 1 4 8 + 11750400 t 1 4 9
= 18 631140480 + 557685 16 1 4 t 783152 t 2 + 391576 t + 348365 + 61965 4 394440 t 2 + 197220 t + 14509 1 4 t 2 + 2295 2048 14676839 23988316 t 1 4 t 5 + 2295 8192 2560 t 2 + 183828 t + 164605 1 4 t 7 > 0 ,
q 6 ( a ) = 7122778335 1024 7183362609 512 a 1 2 2 343651995 128 a 1 2 4 + 673429279 32 a 1 2 6 80731943 8 a 1 2 8 7156763 2 a 1 2 10 + 2206126 a 1 2 12 + 197992 a 1 2 14 19040 a 1 2 16
= 7122778335 1024 7183362609 512 t 343651995 128 t 2 + 673429279 32 t 3 80731943 8 t 4 7156763 2 t 5 + 2206126 t 6 + 197992 t 7 19040 t 8 = : 1 1024 g ( t ) ,
where
g ( t ) = 19496960 t 8 + 202743808 t 7 + 2259073024 t 6 3664262656 t 5 10333688704 t 4 + 21549736928 t 3 2749215960 t 2 14366725218 t + 7122778335 = 3652604928 12404606976 t 1 4 + 9101804544 t 1 4 2 + 9658497024 t 1 4 3 12690591744 t 1 4 4 26611712 t 1 4 5 + 2579755008 t 1 4 6 + 163749888 t 1 4 7 19496960 t 1 4 8
= 3652604928 + 12404606976 1 4 t + 9101804544 1 4 t 2 9658497024 1 4 t 3 12690591744 1 4 t 4 + 26611712 1 4 t 5 + 2579755008 1 4 t 6 163749888 1 4 t 7 19496960 1 4 t 8
= 3652604928 + 12404606976 1 4 t 9658497024 1 4 t 3 + 9101804544 1 4 t 2 12690591744 1 4 t 4 + 26611712 1 4 t 5 163749888 1 4 t 7 + 2579755008 1 4 t 6 19496960 1 4 t 8
= 3652604928 + 10368 1 4 t 465784 t 931568 t 2 + 1138209 + 768 1 4 t 2 8262104 t 16524208 t 2 + 10818545 + 512 1 4 t 5 159912 t 319824 t 2 + 31987 + 2048 1 4 t 6 4760 t 9520 t 2 + 1259051 > 0 .
Lemma 2.
Let a 0 , 1 , n 7 , and
P ( n ) = n a a + n 1 135 a 4 + 270 a 3 + 81 a 2 216 a 81 + 10 a 6 30 a 5 + 97 a 4 144 a 3 71 a 2 + 138 a + 63 n , Q ( n ) = 2 n 1 2 n 3 36 a 8 + 144 a 7 135 a 6 99 a 5 + 135 a 4 + 63 a 3 45 a 2 27 a + 36 a 6 + 108 a 5 27 a 4 126 a 3 + 9 a 2 + 72 a + 27 n + 4 a 8 16 a 7 + 32 a 6 40 a 5 + 20 a 4 + 8 a 3 20 a 2 + 12 a + 9 n 2 .
Then
a n 1 a n ( n ! ) 2 > 2 a a + 1 1 a 2 a P ( n ) Q ( n ) 1 2 n n !
holds.
Proof. 
By using mathematical induction we can prove ( 9 ) . When n = 7 , if the difference between the left and right sides of the above formula is r a , then
r a = 1 10080 a 1 a 2 a a + 6 7 a a + 1 p 1 ( a ) p 2 ( a ) ,
where p 1 ( a ) and p 2 ( a ) are defined as Lemma 1. By Lemma 1 we have p 1 ( a ) > 0 and p 2 ( a ) > 0 , so r a > 0 which implies ( 9 ) holds for n = 7 . Assuming that ( 9 ) holds for n = m 8 , that is,
a m 1 a m m ! > 2 a a + 1 1 a 2 a P ( m ) Q ( m ) 1 2 m .
Next, we prove that ( 9 ) is valid for n = m + 1 . By ( 10 ) , we have
a m + 1 1 a m + 1 m + 1 ! = a + m 1 a + m m + 1 a m 1 a m m ! > a + m 1 a + m m + 1 2 a 1 a 2 a a + 1 P ( m ) Q ( m ) 1 2 m ,
in order to complete the proof of ( 9 ) , it suffices to show that
a + m 1 a + m m + 1 2 a 1 a 2 a a + 1 P ( m ) Q ( m ) 1 2 m > 2 a a + 1 1 a 2 a P ( m + 1 ) Q ( m + 1 ) 1 2 m + 1 ,
that is
a + m 1 a + m m + 1 P ( m ) Q ( m ) 1 2 m > P ( m + 1 ) Q ( m + 1 ) 1 2 m + 1 = P ( m + 1 ) Q ( m + 1 ) 1 2 m 1 2 + m a + m 1 a + m m + 1 P ( m ) Q ( m ) > P ( m + 1 ) Q ( m + 1 ) 2 m + 1 2 2 a + m 1 a + m P ( m ) Q ( m + 1 ) > m + 1 2 m + 1 P ( m + 1 ) Q ( m ) .
In fact,
2 a + m 1 a + m P ( m ) Q ( m + 1 ) m + 1 2 m + 1 P ( m + 1 ) Q ( m ) = k = 0 8 q k ( a ) m 8 k > 0
for m 8 because the coefficients of the power square of m 8 are positive by Lemma 1. □
Lemma 3
([19,20]). Let { a k } k = 0 be a nonnegative real sequence with a m > 0 and k = m + 1 a k > 0 , and
S ( t ) = k = 0 m a k t k + k = m + 1 a k t k
be a convergent power series on the interval ( 0 , r ) ( r > 0 ) . Then the following statements are true:
( 1 ) If S ( r ) 0 , then S ( t ) < 0 for all t ( 0 , r ) ;
( 2 ) If S ( r ) > 0 , then there exists t 0 ( 0 , r ) such that S ( t ) < 0 for t ( 0 , t 0 ) and S ( t ) > 0 for t ( t 0 , r ) .

3. Proof of Main Result

By
2 π K a ( r ) = n = 0 a n 1 a n ( n ! ) 2 r 2 n , 1 r 2 ρ = n = 0 ρ n n ! r 2 n
we have
F ( r ) = : u 1 ( a ) v 1 ( a ) r u 1 ( a ) + v 1 ( a ) r 2 π K a ( r ) u 1 ( a ) v 1 ( a ) r u 2 ( a ) + v 2 ( a ) r w 2 ( a ) r 2 = 27 72 a 9 a 2 + 126 a 3 + 27 a 4 108 a 5 + 36 a 6 + 36 + 84 a 11 a 2 118 a 3 7 a 4 + 68 a 5 4 a 6 16 a 7 + 4 a 8 r 2 2 π K a ( r ) + 18 a a 1 a 2 a + 1 5 a + 5 a 2 3 a + a 2 1 1 r 2 + a a 1 a 2 a + 1 2 a + 2 a 2 3 4 a + a 2 10 a 3 + 5 a 4 3 r 2 1 r 2 90 a 8 360 a 7 + 252 a 6 + 504 a 5 513 a 4 234 a 3 + 225 a 2 + 36 a 27 r 2 10 a 10 50 a 9 20 a 8 + 380 a 7 403 a 6 331 a 5 + 508 a 4 + 79 a 3 194 a 2 + 21 a + 36
= 27 72 a 9 a 2 + 126 a 3 + 27 a 4 108 a 5 + 36 a 6 + 36 + 84 a 11 a 2 118 a 3 7 a 4 + 68 a 5 4 a 6 16 a 7 + 4 a 8 r 2 n = 0 a n 1 a n ( n ! ) 2 r 2 n + 18 a a 1 a 2 a + 1 5 a + 5 a 2 3 a + a 2 1 n = 0 1 2 n n ! r 2 n + a a 1 a 2 a + 1 2 a + 2 a 2 3 4 a + a 2 10 a 3 + 5 a 4 3 r 2 n = 0 1 2 n n ! r 2 n 90 a 8 360 a 7 + 252 a 6 + 504 a 5 513 a 4 234 a 3 + 225 a 2 + 36 a 27 r 2 10 a 10 50 a 9 20 a 8 + 380 a 7 403 a 6 331 a 5 + 508 a 4 + 79 a 3 194 a 2 + 21 a + 36
= 27 72 a 9 a 2 + 126 a 3 + 27 a 4 108 a 5 + 36 a 6 n = 0 a n 1 a n ( n ! ) 2 r 2 n + 36 + 84 a 11 a 2 118 a 3 7 a 4 + 68 a 5 4 a 6 16 a 7 + 4 a 8 n = 0 a n 1 a n ( n ! ) 2 r 2 n + 2 + 18 a a 1 a 2 a + 1 5 a + 5 a 2 3 a + a 2 1 n = 0 1 2 n n ! r 2 n + a a 1 a 2 a + 1 2 a + 2 a 2 3 4 a + a 2 10 a 3 + 5 a 4 3 n = 0 1 2 n n ! r 2 n + 2 90 a 8 360 a 7 + 252 a 6 + 504 a 5 513 a 4 234 a 3 + 225 a 2 + 36 a 27 r 2 10 a 10 50 a 9 20 a 8 + 380 a 7 403 a 6 331 a 5 + 508 a 4 + 79 a 3 194 a 2 + 21 a + 36
= 27 72 a 9 a 2 + 126 a 3 + 27 a 4 108 a 5 + 36 a 6 n = 4 a n 1 a n ( n ! ) 2 r 2 n + 36 + 84 a 11 a 2 118 a 3 7 a 4 + 68 a 5 4 a 6 16 a 7 + 4 a 8 n = 3 a n 1 a n ( n ! ) 2 r 2 n + 2 + 18 a a 1 a 2 a + 1 5 a + 5 a 2 3 a + a 2 1 n = 4 1 2 n n ! r 2 n + a a 1 a 2 a + 1 2 a + 2 a 2 3 4 a + a 2 10 a 3 + 5 a 4 3 n = 3 1 2 n n ! r 2 n + 2
= 27 72 a 9 a 2 + 126 a 3 + 27 a 4 108 a 5 + 36 a 6 n = 4 a n 1 a n ( n ! ) 2 r 2 n + 36 + 84 a 11 a 2 118 a 3 7 a 4 + 68 a 5 4 a 6 16 a 7 + 4 a 8 n = 4 a n 1 1 a n 1 ( n 1 ! ) 2 r 2 n + 18 a a 1 a 2 a + 1 5 a + 5 a 2 3 a + a 2 1 n = 4 1 2 n n ! r 2 n + a a 1 a 2 a + 1 2 a + 2 a 2 3 4 a + a 2 10 a 3 + 5 a 4 3 n = 4 1 2 n 1 n 1 ! r 2 n = : n = 4 c n r 2 n ,
where
c n = 27 72 a 9 a 2 + 126 a 3 + 27 a 4 108 a 5 + 36 a 6 a n 1 a n ( n ! ) 2 + 36 + 84 a 11 a 2 118 a 3 7 a 4 + 68 a 5 4 a 6 16 a 7 + 4 a 8 a n 1 1 a n 1 ( n 1 ! ) 2 + 18 a a 1 a 2 a + 1 5 a + 5 a 2 3 a + a 2 1 1 2 n n ! + a a 1 a 2 a + 1 2 a + 2 a 2 3 4 a + a 2 10 a 3 + 5 a 4 3 1 2 n 1 n 1 ! .
Since
1 2 n = 1 2 1 2 n 1
we have
c n = 27 72 a 9 a 2 + 126 a 3 + 27 a 4 108 a 5 + 36 a 6 a n 1 a n ( n ! ) 2 + 36 + 84 a 11 a 2 118 a 3 7 a 4 + 68 a 5 4 a 6 16 a 7 + 4 a 8 × a n 1 a n a + n 1 1 a + n 1 ( n 1 ! ) 2 + 1 2 18 a a 1 a 2 a + 1 5 a + 5 a 2 3 a + a 2 1 1 2 n 1 n ! + 1 2 a a 1 a 2 a + 1 2 a + 2 a 2 3 4 a + a 2 10 a 3 + 5 a 4 3 1 2 n 2 n 1 ! .
Considering
1 2 n 1 = 1 2 n 1 2 + n 1
we calculate to obtain
c n = 27 72 a 9 a 2 + 126 a 3 + 27 a 4 108 a 5 + 36 a 6 a n 1 a n ( n ! ) 2 + 36 + 84 a 11 a 2 118 a 3 7 a 4 + 68 a 5 4 a 6 16 a 7 + 4 a 8 × n 2 a + n 1 1 a + n 1 a n 1 a n ( n ! ) 2 + 1 2 18 a a 1 a 2 a + 1 5 a + 5 a 2 3 a + a 2 1 1 1 2 + n 1 1 2 n n ! + 1 2 a a 1 a 2 a + 1 2 a + 2 a 2 3 4 a + a 2 10 a 3 + 5 a 4 3 × n 1 2 + n 1 1 2 + n 2 1 2 n n !
= 36 a 8 + 144 a 7 135 a 6 99 a 5 + 135 a 4 + 63 a 3 45 a 2 27 a + 36 a 6 + 108 a 5 27 a 4 126 a 3 + 9 a 2 + 72 a + 27 n + 4 a 8 16 a 7 + 32 a 6 40 a 5 + 20 a 4 + 8 a 3 20 a 2 + 12 a + 9 n 2 n a a + n 1 a n 1 a n ( n ! ) 2 2 a 1 a 2 a a + 1 135 a 4 + 270 a 3 + 81 a 2 216 a 81 + 10 a 6 30 a 5 + 97 a 4 144 a 3 71 a 2 + 138 a + 63 n 2 n 1 2 n 3 1 2 n n !
= Q ( n ) 2 n 1 2 n 3 n a a + n 1 a n 1 a n ( n ! ) 2 2 a 1 a 2 a a + 1 P ( n ) Q ( n ) 1 2 n n ! ,
where P ( n ) and Q ( n ) are shown in Lemma 2. We can calculate directly
c 4 = 1 576 a 1 a 2 a a + 1 p 3 ( a ) , c 5 = 1 14400 a 1 a 2 a a + 1 p 4 ( a ) , c 6 = 1 115200 a 1 a 2 a a + 1 p 5 ( a ) .
By Lemma 1 and Lemma 2 we know that c n < 0 for 4 n 6 and c n > 0 for all n 7 . Since
F ( 1 ) = u 1 2 ( a ) 2 π K a ( 1 ) u 1 ( a ) u 2 ( a ) = 2 π K a ( 1 ) u 2 ( a ) u 1 ( a ) u 1 2 ( a ) = ,
by Lemma 3, we obtain that there exists r 0 ( 0 , 1 ) such that F ( r ) < 0 for r ( 0 , r 0 ) and F ( r ) > 0 for r ( r 0 , 1 ) . At the same time, since
F ( r ) = u 1 ( a ) v 1 ( a ) r u 1 ( a ) + v 1 ( a ) r 2 π K a ( r ) u 2 ( a ) + v 2 ( a ) r w 2 ( a ) r 2 ,
and the function
S ( r ) = : u 1 ( a ) v 1 ( a ) r = u 1 ( a ) v 1 ( a ) 1 r 2 u 1 ( a ) + v 1 ( a ) 1 r 2 u 1 ( a ) + v 1 ( a ) 1 r 2 = u 1 2 ( a ) v 1 2 ( a ) 1 r 2 u 1 ( a ) + v 1 ( a ) 1 r 2 = v 1 2 ( a ) r 2 v 1 2 ( a ) u 1 2 ( a ) u 1 ( a ) + v 1 ( a ) 1 r 2 = v 1 2 ( a ) u 1 ( a ) + v 1 ( a ) 1 r 2 r 2 v 1 2 ( a ) u 1 2 ( a ) v 1 2 ( a ) = v 1 2 ( a ) u 1 ( a ) + v 1 ( a ) 1 r 2 r v 1 2 ( a ) u 1 2 ( a ) v 1 ( a ) r + v 1 2 ( a ) u 1 2 ( a ) v 1 ( a ) = v 1 2 ( a ) u 1 ( a ) + v 1 ( a ) 1 r 2 r 3 5 a a 2 8 a 3 + 4 a 4 + 3 a a 2 + 1 2 a a + 1 2 a 2 + 2 a + 3 × r + 3 5 a a 2 8 a 3 + 4 a 4 + 3 a a 2 + 1 2 a a + 1 2 a 2 + 2 a + 3
has a unique zero on 0 , 1 , which leads to
r 0 = 3 5 a a 2 8 a 3 + 4 a 4 + 3 a a 2 + 1 2 a a + 1 3 + 2 a 2 a 2 .
The fact that r 0 0 , 1 is true, because
r 0 > 0 3 + 2 a 2 a 2 = 3 + 2 a 1 a > 0
and
r 0 < 1 9 5 a a 2 8 a 3 + 4 a 4 + 3 a a 2 + 1 < 2 a a + 1 3 + 2 a 2 a 2 2 2 a a + 1 3 + 2 a 2 a 2 2 9 5 a a 2 8 a 3 + 4 a 4 + 3 a a 2 + 1 = 3 2 a + 4 a 2 4 a 3 + 2 a 4 2 > 0
hold for all a 0 , 1 . Clearly, S ( r ) < 0 for r ( 0 , r 0 ) and S ( r ) > 0 for r ( r 0 , 1 ) . In a word, the two functions F ( r ) and S ( r ) have the same sign on both sides of the point r 0 , so we have
2 π K a ( r ) G 2 , 1 ( r ) = F ( r ) S ( r ) u 1 ( a ) + v 1 ( a ) r > 0
holds for all r 0 , 1 with r r 0 . Because these two functions K a ( r ) and G 2 , 1 ( r ) are continuous at the point r 0 , the inequality ( 2 ) still holds for r = r 0 .
The proof of Theorem 1 is complete.

4. Conclusions

In this paper, we obtain a new simple rational approximation for K a ( r ) :
2 π K a ( r ) > u 2 ( a ) + v 2 ( a ) r w 2 ( a ) r 2 u 1 ( a ) + v 1 ( a ) r = : G 2 , 1 ( r ) ,
which holds for all r ( 0 , 1 ) , where K a ( r ) is the generalized elliptic integral of the first kind, r = 1 r 2 , and
u 1 ( a ) = 2 a 4 a 2 + 4 a 3 2 a 4 + 3 , v 1 ( a ) = 7 a 5 a 2 4 a 3 + 2 a 4 + 6 , u 2 ( a ) = 17 a + 3 a 2 35 a 3 + 5 a 4 + 15 a 5 5 a 6 + 3 , v 2 ( a ) = 5 a 19 a 2 + 38 a 3 + 6 a 4 30 a 5 + 10 a 6 + 6 , w 2 ( a ) = 3 a 7 a 2 + 3 a 3 + 11 a 4 15 a 5 + 5 a 6 .
In this way, when a takes any number in ( 0 , 1 / 2 ] , we will obtain a more accurate estimate of the corresponding function.

Funding

This research received no external funding.

Acknowledgments

The author is thankful to reviewers for reviewers’ careful corrections and valuable comments on the original version of this paper.

Conflicts of Interest

The author declares that he has no conflict of interest.

References

  1. Borwein, J.M.; Borwein, P.B. Pi and the AGM; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
  2. Yang, Z.-H.; Tian, J.-F. A class of completely mixed monotonic functions involving the gamma function with applications. Proc. Am. Math. Soc. 2018, 146, 4707–4721. [Google Scholar] [CrossRef]
  3. Yang, Z.-H.; Tian, J.-F.; Ha, M.-H. A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder. Proc. Am. Math. Soc. 2020, 148, 2163–2178. [Google Scholar] [CrossRef]
  4. Anderson, G.D.; Qiu, S.-L.; Vamanamurthy, M.K.; Vuorinen, M. Generalized elliptic integrals and modular equations. Pac. J. Math. 2000, 192, 1–37. [Google Scholar] [CrossRef] [Green Version]
  5. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Conformal Invariants, Inequalities, and Quasiconformal Maps; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
  6. Anderson, G.D.; Qiu, S.-L.; Vuorinen, M. Precise estimates for differences of the Gaussian hypergeometric function. J. Math. Anal. Appl. 1997, 215, 212–234. [Google Scholar] [CrossRef] [Green Version]
  7. Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 2001, 31, 327–353. [Google Scholar] [CrossRef]
  8. Song, Y.-Q.; Zhou, P.-G.; Chu, Y.-M. Inequalities for the Gaussian hypergeometric function. Sci. China Math. 2014, 57, 2369–2380. [Google Scholar] [CrossRef]
  9. Wang, M.-K.; Chu, Y.-M.; Jiang, Y.-P. Ramanujan’s cubic transformation inequalities for hypergeometric functions. Appl. Math. Comput. 2016, 276, 44–60. [Google Scholar]
  10. Wang, M.-K.; Chu, Y.-M.; Song, Y.-Q. Asymptotical formulas for Gaussian and generalized zero-balanced hypergeometric functions. Rocky Mt. J. Math. 2016, 46, 679–691. [Google Scholar]
  11. Wang, M.-K.; Chu, Y.-M. Refinenemts of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 2017, 37B, 607–622. [Google Scholar] [CrossRef]
  12. Wang, M.-K.; He, Z.-Y.; Chu, Y.-M. Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind. Comput. Methods Funct. Theory 2020, 20, 111–124. [Google Scholar] [CrossRef]
  13. Baricz, Á. Turán type inequalities for generalized complete elliptic integrals. Math. Z. 2007, 256, 895–911. [Google Scholar] [CrossRef]
  14. Wang, M.-K.; Chu, Y.-M.; Qiu, S.-L. Some monotonicity properties of generalized ellipitic integrals with applications. Math. Inequal. Appl. 2013, 16, 671–677. [Google Scholar]
  15. Wang, M.-K.; Chu, Y.-M.; Qiu, S.-L. Sharp bounds for generalized elliptic integrals of the first kind. J. Math. Anal. Appl. 2015, 429, 744–757. [Google Scholar] [CrossRef]
  16. Yang, Z.-H.; Chu, Y.-M. A monotonicity property involving the generalized elliptic integrals of the first kind. Math. Inequal. Appl. 2017, 20, 729–735. [Google Scholar]
  17. Qiu, S.-L.; Vuorinen, M. Special functions in geometric function theory. Handb. Complex Anal. Geom. Funct. Theory 2005, 2, 621–659. [Google Scholar]
  18. Zhu, L. A simple rational approximation to the generalized elliptic integral of the first kind. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. Matemáticas 2021, 115, 89. [Google Scholar] [CrossRef]
  19. Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018, 462, 1714–1726. [Google Scholar] [CrossRef]
  20. Yang, Z.-H.; Tian, J.-F.; Zhu, Y.-R. A Rational Approximation for the Complete Elliptic Integral of the First Kind. Mathematics 2020, 8, 635. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhu, L. New Lower Bound for the Generalized Elliptic Integral of the First Kind. Mathematics 2022, 10, 1560. https://doi.org/10.3390/math10091560

AMA Style

Zhu L. New Lower Bound for the Generalized Elliptic Integral of the First Kind. Mathematics. 2022; 10(9):1560. https://doi.org/10.3390/math10091560

Chicago/Turabian Style

Zhu, Ling. 2022. "New Lower Bound for the Generalized Elliptic Integral of the First Kind" Mathematics 10, no. 9: 1560. https://doi.org/10.3390/math10091560

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop