On \({\mathbb{BID}}\)-Cone b-Metric Spaces over Banach Algebras: New Topological Properties and Fixed Point Theorems
Abstract
:1. Introduction and Preliminaries
2. Inferior Idempotent Cones and Fundamental Questions
- (a)
- If C is a cone, then for all ;
- (b)
- If C is a convex cone, then .
- (i)
- If (that is, and ), then ;
- (ii)
- If (that is, and ), then ;
- (iii)
- If (that is, and ), then ;
- (iv)
- If (that is, and ), then ;
- (v)
- If and , then ;
- (vi)
- If and , then ;
- (vii)
- If and , then ;
- (viii)
- If and , then .
- (i)
- ;
- (ii)
- .
- (a)
- Is there an invertible element for any point in ?
- (b)
- Is true?
- (a)
- The answer is no. For example, let , and K be defined as in Example 2. TakeThen . However, a is not invertible because of ;
- (b)
- The answer is no. For example, let , and K be defined as in Example 2. PutThen and . However, we have
3. -Cone -Metric Spaces over Banach Algebra and Basic Topological Properties
- (i)
- A -sequence if ;
- (ii)
- A c-sequence if for any , there exists a natural number N such that for all , one has .
- (i)
- for all and if and only if ;
- (ii)
- for all ;
- (iii)
- for all .
- (i)
- for all and if and only if ;
- (ii)
- ;
- (iii)
- for all .
- (i)
- for all and if and only if ;
- (ii)
- ;
- (iii)
- for all .
- (i)
- is called a -cone b-convergent sequence if it is a c-sequence;
- (ii)
- is called a -cone b-Cauchy sequence if is a c-sequence for ;
- (iii)
- is called complete if every -cone b-Cauchy sequence in X is -cone b-convergent.
- (a)
- Let with . Does imply ?
- (b)
- Let . Is a -sequence?
- (a)
- The answer is no. For example, define the same , and K as in the solution of Question B. PutThen , , andIt is easy to get that
- (b)
- The answer is no. For example, let , e, , K and an associative and distributive multiplication be defined as in Example 1. Take . Hence, . However, we obtain
4. Some New Judgement Theorems and Fixed Point Theorems
- (i)
- Assume that . In view of (11), it is valid that
- (ii)
- Assume that . Put , where indicates the floor function or the greatest integer function. It may be verified that and . Then
5. Conclusions
- (a)
- We introduce the concept of inferior idempotent cones (see Definition 1) and give some fundamental questions and examples;
- (b)
- The concept of -cone b-metric space over Banach algebra with inferior idempotent cones, -cone b-convergent sequence and -cone b-Cauchy sequence are introduced (for more details, see Section 3);
- (c)
- In Section 4, we establish some new auxiliary theorems and fixed point theorems in the setting of complete -cone b-metric spaces over Banach algebra.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstrait et leur application aux equations, integrals. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric space (Russian). Funct. Anal. Ulyanovsk. Gos. Ped. Inst. Ulyanovsk. 1989, 30, 26–37. [Google Scholar]
- Chistyakov, V.V. Modular metric spaces, I: Basic concepts. Nonlinear Anal. 2010, 72, 1–14. [Google Scholar] [CrossRef]
- Huang, L.-G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 2007, 332, 1468–1476. [Google Scholar] [CrossRef] [Green Version]
- Kramosil, O.; Michalek, J. Fuzzy metric and statistical metric space. Kybernetika 1975, 11, 326–334. [Google Scholar]
- Matthews, S.G. Partial metric topology, Papers on general topology and applications. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Alnafei, S.H.; Radenović, S.; Shahzad, N. Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. Appl. Math. Lett. 2011, 24, 2162–2166. [Google Scholar] [CrossRef] [Green Version]
- Du, W.-S. A note on cone metric fixed point theory and its equivalence. Nonlinear Anal. 2010, 72, 2259–2261. [Google Scholar] [CrossRef]
- Du, W.-S.; Karapinıar, E. A note on cone b-metric and its related results: Generalizations or equivalence. Fixed Point Theory Appl. 2013, 2013, 210. [Google Scholar] [CrossRef] [Green Version]
- Huang, H. Topological properties of E-metric spaces with applications to fixed point theory. Mathematics 2019, 7, 1222. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Xu, S. Some new topological properties in cone metric spaces. J. Math. PRC 2015, 35, 513–518. [Google Scholar]
- Hussain, N.; Shah, M.H. KKM mappings in cone b-metric spaces. Comput. Math. Appl. 2011, 62, 1677–1684. [Google Scholar] [CrossRef] [Green Version]
- Janković, S.; Kadelburg, Z.; Radenovixcx, S. On cone metric spaces: A survey. Nonlinear Anal. 2011, 74, 2591–2601. [Google Scholar] [CrossRef]
- Lu, N.; He, F.; Du, W.-S. Fundamental questions and new counterexamples for b-metric spaces and Fatou property. Mathematics 2019, 7, 1107. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; He, F.; Du, W.-S. On the best areas for Kannan system and Chatterjea system in b-metric spaces. Optimization 2021, 70, 973–986. [Google Scholar] [CrossRef]
- Oner, T. Some topological properties of fuzzy cone metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Derafshpour, M.; Hamlbarani, R. A review on topological properties of cone metric spaces. J. Bone Jt. Surg. 2008, s2–9, 615–632. [Google Scholar]
- Xu, S.; Radenović, S. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality. Fixed Point Theory Appl. 2014, 7, 1222. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xu, S. Cone metric spaces over Banach algebras and fixed point theorems of generalized Lipschitz mappings. Fixed Point Theory Appl. 2013, 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Deng, G.; Radenović, S. Some topological properties and fixed point results in cone metric spaces over Banach algebras. Positivity 2019, 23, 21–34. [Google Scholar] [CrossRef]
- Huang, H.; Hu, S.; Popović, B.Z.; Radenovixcx, S. Common fixed point theorems for four mappings on cone b-metric spaces over Banach algebras. J. Nonlinear Sci. Appl. 2016, 9, 3655–3671. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Radenović, S. Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications. J. Nonlinear Sci. Appl. 2015, 8, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Rudin, W. Functional Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Huang, H.; Radenović, S.; Deng, G. A sharp generalization on cone b-metric space over Banach algebra. J. Nonlinear Sci. Appl. 2017, 10, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Radenović, S. Some fixed point results of generalized Lipschitz mappings on cone b-metric spaces over Banach algebras. J. Comput. Anal. Appl. 2016, 20, 566–583. [Google Scholar]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Mitrović, Z.D. A note on the results of Suzuki, Miculescu and Mihail. J. Fixed Point Theory Appl. 2019, 21, 4. [Google Scholar] [CrossRef]
- Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 11. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Du, W.-S.; Chen, J.-Y. On \({\mathbb{BID}}\)-Cone b-Metric Spaces over Banach Algebras: New Topological Properties and Fixed Point Theorems. Mathematics 2022, 10, 1425. https://doi.org/10.3390/math10091425
Huang H, Du W-S, Chen J-Y. On \({\mathbb{BID}}\)-Cone b-Metric Spaces over Banach Algebras: New Topological Properties and Fixed Point Theorems. Mathematics. 2022; 10(9):1425. https://doi.org/10.3390/math10091425
Chicago/Turabian StyleHuang, Huaping, Wei-Shih Du, and Jen-Yuan Chen. 2022. "On \({\mathbb{BID}}\)-Cone b-Metric Spaces over Banach Algebras: New Topological Properties and Fixed Point Theorems" Mathematics 10, no. 9: 1425. https://doi.org/10.3390/math10091425