Refinement Mappings Related to Hermite-Hadamard Type Inequalities for GA-Convex Function
Abstract
:1. Introduction
- (i)
- is convex convex on .
- (ii)
- The following hold:
- (iii)
- increases monotonically on .
- (i)
- for all
- (ii)
- is convex convex on .
- (iii)
- The following hold:
- (iv)
- The following inequality is valid:
- (v)
- increases monotonically on and decreases monotonically on .
- (vi)
- We have the inequality for all .
- (i)
- is convex on .
- (ii)
- increases monotonically on .
- (iii)
- The following hold:
2. The Main Results
- (i)
- is GA-convex on .
- (ii)
- We have
- (iii)
- increases monotonically on .
- (i)
- for all τ in .
- (ii)
- is GA-convex on .
- (iii)
- We have
- (iv)
- The following inequality is valid:
- (v)
- decreases monotonically on and increases monotonically on .
- (vi)
- We have the inequality for all
- (i)
- is GA-convex on .
- (ii)
- The following hold:
- (iii)
- increases monotonically on .
3. Application to Special Means
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hermite, C. Sur deux limites d’une intégrale dé finie. Mathesis 1893, 3, 82. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une function considéré par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Dragomir, S.S. Inequalities of Jensen type for GA-convex functions. RGMIA Res. Rep. Collect. 2015, 18, 1–26. [Google Scholar]
- Dragomir, S.S.; Cho, Y.J.; Kim, S.S. Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 2000, 245, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S.; Milosevic, D.S.; Sandor, J. On some refinements of Hadamard’s inequalities and applications. Univ. Belgrad. Publ. Elek. Fak. Sci. Math. 1993, 4, 3–10. [Google Scholar]
- Dragomir, S.S. Inequalities of Hermite-Hadamard Type for HA-Convex Functions. Moroc. J. Pure Appl. Anal. 2017, 3, 83–101. [Google Scholar] [CrossRef] [Green Version]
- Ardic, M.A.; Akdemir, A.O.; Set, E. New Ostrowski like inequalities for GG-convex and GA-convex functions. Math. Ineq. Appl. 2016, 19, 1159–1168. [Google Scholar]
- Ardic, M.A.; Akdemir, A.O.; Yildiz, K. On Some New Inequalities via GG-Convexity and GA-Convexity. Filomat 2018, 32, 5707–5717. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; İşcan, İ. Fractional Hermite-Hadamard-Fejer Type Inequalitıes for GA-Convex Functions. Turk. J. Ineq. 2018, 2, 1–20. [Google Scholar]
- Dragomir, S.S. On Hadamard’s inequality for convex functions. Mat. Balk. 1992, 6, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Math. Ineq. Appl. 2000, 3, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. On Hadamard’s inequality on a disk. J. Ineq. Pure Appl. Math. 2000, 1, 2. [Google Scholar]
- Dragomir, S.S. On some integral inequalities for convex functions. Zb.-Rad. (Kragujevac) 1996, 18, 21–25. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two new mappings associated with Hadamard’s inequalities for convex functions. Appl. Math. Lett. 1998, 11, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Two mappings in connection to Hadamardís inequalities. J. Math. Anal. Appl. 1992, 167, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.S.; Hong, M.C. A note on Hadamard’s inequality. Tamkang. J. Math. 1997, 28, 33–37. [Google Scholar] [CrossRef]
- Niculescu, C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3, 155–167. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, M.A.; Kalsoom, H.; Khan, Z.A.; Al-moneef, A.A. Refinement Mappings Related to Hermite-Hadamard Type Inequalities for GA-Convex Function. Mathematics 2022, 10, 1398. https://doi.org/10.3390/math10091398
Latif MA, Kalsoom H, Khan ZA, Al-moneef AA. Refinement Mappings Related to Hermite-Hadamard Type Inequalities for GA-Convex Function. Mathematics. 2022; 10(9):1398. https://doi.org/10.3390/math10091398
Chicago/Turabian StyleLatif, Muhammad Amer, Humaira Kalsoom, Zareen A. Khan, and Areej A. Al-moneef. 2022. "Refinement Mappings Related to Hermite-Hadamard Type Inequalities for GA-Convex Function" Mathematics 10, no. 9: 1398. https://doi.org/10.3390/math10091398
APA StyleLatif, M. A., Kalsoom, H., Khan, Z. A., & Al-moneef, A. A. (2022). Refinement Mappings Related to Hermite-Hadamard Type Inequalities for GA-Convex Function. Mathematics, 10(9), 1398. https://doi.org/10.3390/math10091398