Using Matrix Eigenvalues to Construct an Iterative Method with the Highest Possible Efficiency Index Two
Abstract
:1. Introduction
2. Derivation of Methods and Convergence Analysis
3. Further Improvements via the Concept of Methods with Memory
3.1. One-Parametric Method
3.2. Two-Parametric Method
3.3. Tri-Parametric Method
- (I)
- Now, we consider three parameters’ iterative methods as follows:
- (II)
- Now, we study tri-parametric iterative methods as follows:
- (III)
- Now, we consider three parameters’ iterative methods as follows:
- (IV)
- At the end of this section, we have presented the most important theorem of this paper, which has the highest degree of convergence of a Ostrowski-like two-point method, i.e., 7.97:
4. Numerical Results
- TNE: Total Number of Evaluations required for a method to do the specified iterations;
- Iter: The number of iterations;
- The errors of estimations to the simple zeros of ;
- The computational order of convergence () [14] can be calculated via:
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Cho, S.Y.; Yao, J.C. Convergence analysis of an inertial Tseng’s extragradient algorithm for solving pseudomonotone variational inequalities and applications. J. Nonlinear Var. Anal. 2021, 5, 627–644. [Google Scholar]
- Alsaedi, A.; Broom, A.; Ntouyas, S.K.; Ahmad, B. Existence results and the dimension of the solution set for a nonlocal inclusions problem with mixed fractional derivatives and integrals. J. Nonlinear Funct. Anal. 2020, 2020, 28. [Google Scholar]
- Itkin, A.; Soleymani, F. Four-factor model of quanto CDS with jumps-at-default and stochastic recovery. J. Comput. Sci. 2021, 54, 101434. [Google Scholar] [CrossRef]
- Soheili, A.R.; Amini, M.; Soleymani, F. A family of Chaplygin-type solvers for Itô stochastic differential equations. Appl. Math. Comput. 2019, 340, 296–304. [Google Scholar] [CrossRef]
- Ostrowski, A.M. Solution of Equations and Systems of Equations; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. ACM 1974, 21, 643–651. [Google Scholar] [CrossRef]
- King, R.F. A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 1973, 10, 876–879. [Google Scholar] [CrossRef]
- Sharma, J.R.; Sharma, R. A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 2010, 54, 445–458. [Google Scholar] [CrossRef]
- Chun, C.; Lee, M.Y. A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl. Math. Comput. 2013, 223, 509–519. [Google Scholar] [CrossRef]
- Torkashvand, V.; Lotfi, T.; Araghi, M.A.F. A new family of adaptive methods with memory for solving nonlinear equations. Math. Sci. 2019, 13, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, F.; Lotfi, T.; Tavakoli, E.; Haghani, F.K. Several iterative methods with memory using self-accelerators. Appl. Math. Comput. 2015, 254, 452–458. [Google Scholar] [CrossRef]
- Herzberger, J. Uber Matrixdarstellungen fur Iterationverfahren bei nichtlinearen Gleichungen. Computing 1974, 12, 215–222. [Google Scholar] [CrossRef]
- Don, E. Schaum’s Outline of Mathematica; McGraw-Hill Professional: New York, NY, USA, 2000. [Google Scholar]
- Petković, M.S.; Neta, B.; Petkovixcx, L.D.; Džunixcx, J. Multipoint Methods for Solving Nonlinear Equations; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Campos, B.; Cordero, A.; Torregrosa, J.R.; Vindel, P. Stability of King’s family of iterative methods with memory. J. Comput. Appl. Math. 2017, 318, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Choubey, N.; Jaiswal, J.P. Two- and three-point with memory methods for solving nonlinear equations. Numer. Anal. Appl. 2017, 10, 74–89. [Google Scholar] [CrossRef]
- Chun, C. Some fourth-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 2008, 195, 454–459. [Google Scholar] [CrossRef]
- Cordero, A.; Lotfi, T.; Khoshandi, A.; Torregrosa, J.R. An efficient Steffensen-like iterative method with memory. Bull. Math. Soc. Sci. Math. Roum. 2015, 58, 49–58. [Google Scholar]
- Cordero, A.; Lotfi, T.; Torregrosa, J.R.; Assari, P.; Mahdiani, K. Some new bi-accelarator two-point methods for solving nonlinear equations. Comput. Appl. Math. 2016, 35, 251–267. [Google Scholar] [CrossRef]
- Jaiswal, J.P. Two efficient bi-parametric derivative free with memory methods for finding simple roots nonlinear equations. J. Adv. Appl. Math. 2016, 1, 203–210. [Google Scholar] [CrossRef]
- Jarratt, P. Some fourth order multipoint iterative methods for solving equations. Math. Comput. 1966, 20, 434–437. [Google Scholar] [CrossRef]
- Maheshwari, A.K. A fourth-order iterative method for solving nonlinear equations. Appl. Math. Comput. 2009, 211, 383–391. [Google Scholar] [CrossRef]
- Kansal, M.; Kanwar, V.; Bhatia, S. Efficient derivative-free variants of Hansen-Patrick’s family with memory for solving nonlinear equations. Numer. Algorithms 2016, 73, 1017–1036. [Google Scholar] [CrossRef]
- Lalehchini, M.J.; Lotfi, T.; Mahdiani, K. On developing an adaptive free-derivative Kung and Traub’s method with memory. J. Math. Ext. 2020, 14, 221–241. [Google Scholar]
- Zadeh, M.M.; Lotfi, T.; Amirfakhrian, M. Developing two efficient adaptive Newton-type methods with memory. Math. Methods Appl. Sci. 2019, 42, 5687–5695. [Google Scholar] [CrossRef]
- Torkashvand, V.; Kazemi, M. On an efficient family with memory with high order of convergence for solving nonlinear equations. Int. J. Ind. Math. 2020, 12, 209–224. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: New York, NY, USA, 1964. [Google Scholar]
- Wang, X. An Ostrowski-type method with memory using a novel self-accelerating parameter. J. Comput. Appl. Math. 2018, 330, 710–720. [Google Scholar] [CrossRef]
- Zafar, F.; Yasmin, N.; Kutbi, M.A.; Zeshan, M. Construction of tri-parametric derivative free fourth order with and without memory iterative method. J. Nonlinear Sci. Appl. 2016, 9, 1410–1423. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, M. Two iterative methods with memory constructed by the method of inverse interpolation and their dynamics. Mathematics 2020, 8, 1080. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Zhu, P.-Y.; Gu, X.-M.; Zhao, X.-L.; Jian, H.-Y. A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation. J. Sci. Comput. 2020, 83, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-L.; Gu, X.-M.; Ostermann, A. A preconditioning technique for an all-at-once system from volterra subdiffusion equations with graded time steps. J. Sci. Comput. 2021, 88, 11. [Google Scholar] [CrossRef]
- Gu, X.M.; Wu, S.L. A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel. J. Comput. Phys. 2020, 417, 109576. [Google Scholar] [CrossRef]
- Ernst, P.A.; Soleymani, F. A Legendre-based computational method for solving a class of Itô stochastic delay differential equations. Numer. Algorithms 2019, 80, 1267–1282. [Google Scholar] [CrossRef]
Functions | OM [5] | JM [21] | KTM [6] | MM [22] | CM [17] | |
---|---|---|---|---|---|---|
1.47E-43 | 3.75E-43 | 5.39E-31 | 1.08E-18 | 1.47E-43 | ||
9.19E-171 | 4.04E-169 | 5.40E-120 | 2.13E-703 | 9.19E-171 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
4.00 | 4.00 | 4.00 | 3.99 | 4.00 | ||
3.60E-47 | 3.60E-47 | 3.36E-38 | 3.85E-28 | 3.60E-47 | ||
2.45E-186 | 2.45E-186 | 4.37E-150 | 1.60E-109 | 2.45E-186 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
4.00 | 4.00 | 4.00 | 4.00 | 4.00 | ||
1.56E-29 | 4.40E-24 | 7.32E-28 | 3.43E-26 | 1.56E-29 | ||
1.35E-115 | 7.72E-94 | 1.33E-108 | 1.31E-101 | 1.35E-115 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Functions | TM4 (6), | TM4 (6), | TM4 (6), | TM4 (6), | TM4 (6), | |
---|---|---|---|---|---|---|
4.24E-12 | 0E-0 | 2.89E-10 | 7.74E-8 | - | ||
1.80E-45 | 6.39E-14 | 1.62E-37 | 1.86E-27 | 4.98E-12 | ||
Iter | 3 | 3 | 3 | 3 | 3 | |
3.99 | 4.11 | 4.00 | 4.00 | 3.83 | ||
7.94E-12 | 2.17E-9 | 6.57E-15 | 8.14E-15 | - | ||
6.12E-45 | 3.42E-35 | 1.47E-57 | 3.57E-59 | 7.01E-11 | ||
Iter | 3 | 3 | 3 | 3 | 3 | |
3.99 | 4.00 | 3.99 | 3.97 | 3.63 | ||
8.11E-9 | 6.13E-10 | 5.94E-9 | 3.76E-9 | 1.81E-8 | ||
9.42E-33 | 7.08E-39 | 2.01E-33 | 2.12E-34 | 4.87E-31 | ||
Iter | 3 | 3 | 3 | 3 | 3 | |
4.00 | 4.07 | 4.00 | 4.00 | 4.01 |
Functions | TM6 (16), | TM6 (16), | TM6 (16), | TM6 (16), | TM6 (16), | |
---|---|---|---|---|---|---|
1.02E-90 | 9.59E-38 | 7.76E-85 | 1.60E-63 | 1.64E-36 | ||
1.05E-538 | 7.07E-221 | 1.98E-503 | 1.55E-381 | 1.82E-219 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
6.00 | 6.00 | 6.00 | 6.00 | 6.00 | ||
1.70E-100 | 1.09E-78 | 1.58E-125 | 8.85E-104 | 3.53E-28 | ||
2.03E-599 | 1.41E-468 | 1.28E-749 | 3.93E-619 | 1.58E-170 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
6.00 | 6.00 | 6.00 | 6.00 | 6.00 | ||
2.96E-84 | 1.97E-84 | 2.69E-84 | 2.43E-84 | 7.65E-85 | ||
1.246E-501 | 1.06E-502 | 6.92E-502 | 3.77E-502 | 3.67E-505 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Functions | TM7 (18), | TM7 (18), | TM7 (18), | TM7 (18), | TM7 (18), | |
---|---|---|---|---|---|---|
8.86E-130 | 1.66E-55 | 2.63E-119 | 2.95E-92 | 3.80E-56 | ||
3.69E-903 | 3.02E-383 | 7.51E-830 | 1.68E-640 | 9.89E-388 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
7.00 | 7.00 | 7.00 | 7.00 | 7.00 | ||
5.63E-147 | 6.47E-117 | 7.66E-186 | 1.89E-150 | 3.78E-54 | ||
3.62E-1033 | 6.95E-816 | 2.26E-1298 | 1.25E-1050 | 1.61E-376 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
7.00 | 7.00 | 7.00 | 7.00 | 7.00 | ||
3.32E-119 | 1.70E-119 | 2.83E-119 | 2.40E-119 | 3.43E-120 | ||
4.38E-827 | 3.99E-830 | 1.43E-828 | 4.52E-829 | 5.48E-835 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
7.00 | 6.99 | 7.00 | 7.00 | 7.00 |
Functions | TM7.5 (19), | TM7.5 (19), | TM7.5 (19), | TM7.5 (19), | TM7.5 (19), | |
---|---|---|---|---|---|---|
1.08E-160 | 2.53E-69 | 5.73E-147 | 5.42E-114 | 2.62E-69 | ||
1.97E-1205 | 1.11E-518 | 7.52E-1102 | 7.82E-584 | 2.70E-516 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
7.51 | 7.51 | 7.50 | 7.50 | 7.47 | ||
1.58E-188 | 2.99E-148 | 3.39E-237 | 3.84E-192 | 1.21E-64 | ||
5.80E-1505 | 9.32E-1183 | 2.50E-1894 | 6.85E-1534 | 6.55E-514 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
8.00 | 8.00 | 8.00 | 8.00 | 8.00 | ||
4.23E-137 | 1.89E-137 | 3.49E-137 | 2.87E-137 | 2.78E-138 | ||
1.97E-1027 | 4.76E-1030 | 4.70E-1028 | 1.07E-1028 | 2.63E-1036 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
7.51 | 7.51 | 7.51 | 7.51 | 7.50 |
Functions | TM8 (24), | TM8 (24), | TM8 (24), | TM8 (24), | TM8 (24), | |
---|---|---|---|---|---|---|
3.27E-167 | 2.00E-69 | 7.97E-152 | 5.40E-117 | 1.11E-69 | ||
4.02E-1331 | 8.04E-549 | 4.95E-1208 | 2.19E-929 | 7.19E-551 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
8.00 | 8.00 | 8.003 | 8.00 | 8.00 | ||
1.58E-188 | 2.99E-148 | 3.39E-237 | 3.84E-192 | 1.21E-64 | ||
5.80E-1505 | 9.32E-1183 | 2.50E-1894 | 6.85E-1534 | 6.55E-514 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
8.00 | 8.00 | 8.003 | 8.00 | 8.00 | ||
3.19E-144 | 1.42E-144 | 2.63E-144 | 2.16E-144 | 2.06E-145 | ||
1.31E-1149 | 2.04E-1152 | 2.83E-1150 | 5.79E-1151 | 3.95E-1159 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
8.00 | 8.00 | 8.003 | 8.00 | 8.00 |
Functions | CLKTM () [18] | CLTAMM () [19] | KKBM (a = 1) Cas 1 [23] | ZYKZM, Method F1 [29] | TM8, (24), | |
---|---|---|---|---|---|---|
3.15E-84 | 2.32E-115 | 1.21E-106 | 2.46E-108 | 5.90E-111 | ||
4.20E-506 | 2.90E-802 | 3.44E-741 | 4.11E-810 | 4.50E-881 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
6.00 | 7.00 | 7.00 | 7.49 | 8.00 | ||
1.85E-100 | 2.26E-177 | 7.02E-157 | 1.96E-154360 | 1.47E-159 | ||
1.43E-599 | 4.91E-1416 | 1.23E-1095 | 3.15E-1232 | 3.19E-1273 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
6.00 | 8.00 | 7.00 | 8.00 | 8.00 | ||
3.11E-87 | 8.95E-112 | 1.85E-119 | 8.71E-136 | 4.69E-144 | ||
1.50E-520 | 2.64E-777 | 7.30E-830 | 4.42E-1025 | 2.83E-1148 | ||
Iter | 4 | 4 | 4 | 4 | 4 | |
6.00 | 6.99 | 6.99 | 7.51 | 8.00 |
With Memory Methods | Number of Sub-Steps | Optimal Order | COC | Percentage Increase |
---|---|---|---|---|
CCTVM [15] | 2 | 4.00 | 4.24 | |
CJM [16] | 2 | 4.00 | 4.56 | |
CJM [16] | 2 | 4.00 | 4.79 | |
CJM [16] | 2 | 4.00 | 5.00 | |
CJM [16] | 3 | 8.00 | 9.00 | |
CJM [16] | 3 | 8.00 | 9.58 | |
CJM [16] | 3 | 8.00 | 9.80 | |
CJM [16] | 3 | 8.00 | 10.00 | |
CLKTM [18] | 2 | 4.00 | 6.00 | |
CLTAMM [19] | 2 | 4.00 | 7.00 | |
JM [20] | 2 | 4.00 | 7.00 | |
JM [20] | 3 | 8.00 | 14.00 | |
KKBM [23] | 2 | 4.00 | 7.00 | |
LLMM [24] | 2 | 4.00 | 6.32 | |
MLAM [25] | 2 | 4.00 | 5.95 | |
SLTKM [11] | 2 | 4.00 | 7.22 | |
SLTKM [11] | 2 | 4.00 | 12.00 | |
TKM [26] | 3 | 8.00 | 14.00 | |
TKM [26] | 4 | 16.00 | 28.00 | |
TM [27] | 1 | 2.00 | 2.41 | |
WM [28] | 2 | 4.00 | 4.24 | |
WM [28] | 2 | 4.00 | 4.45 | |
WZM [30] | 2 | 4.00 | 4.56 | |
WZM [30] | 3 | 8.00 | 10.13 | |
ZYKZM [29] | 2 | 4.00 | 7.5 | |
(16) | 2 | 4.00 | 6.00 | |
(18) | 2 | 4.00 | 7.00 | |
(19) | 2 | 4.00 | 7.53 | |
(20) | 2 | 4.00 | 7.77 | |
(21) | 2 | 4.00 | 7.89 | |
(23) | 2 | 4.00 | 7.94 | |
(24) | 2 | 4.00 | 7.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, M.Z.; Torkashvand, V.; Shateyi, S.; Asma, M. Using Matrix Eigenvalues to Construct an Iterative Method with the Highest Possible Efficiency Index Two. Mathematics 2022, 10, 1370. https://doi.org/10.3390/math10091370
Ullah MZ, Torkashvand V, Shateyi S, Asma M. Using Matrix Eigenvalues to Construct an Iterative Method with the Highest Possible Efficiency Index Two. Mathematics. 2022; 10(9):1370. https://doi.org/10.3390/math10091370
Chicago/Turabian StyleUllah, Malik Zaka, Vali Torkashvand, Stanford Shateyi, and Mir Asma. 2022. "Using Matrix Eigenvalues to Construct an Iterative Method with the Highest Possible Efficiency Index Two" Mathematics 10, no. 9: 1370. https://doi.org/10.3390/math10091370
APA StyleUllah, M. Z., Torkashvand, V., Shateyi, S., & Asma, M. (2022). Using Matrix Eigenvalues to Construct an Iterative Method with the Highest Possible Efficiency Index Two. Mathematics, 10(9), 1370. https://doi.org/10.3390/math10091370