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Abstract: In this paper, we first derive a family of iterative schemes with fourth order. A weight
function is used to maintain its optimality. Then, we transform it into methods with several self-
accelerating parameters to reach the highest possible convergence rate 8. For this aim, we employ
the property of the eigenvalues of the matrices and the technique with memory. Solving several
nonlinear test equations shows that the proposed variants have a computational efficiency index of
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1. Introduction

This paper is concerned with the numerical solution of nonlinear problems having the
structure g(x) = 0. In fact, we look at iterative approaches to solving nonlinear problems.
It is famous that the celebrated Newton’s scheme can define xk+1 = xk −

g(xk)
g′(xk)

with the
local second convergence rate for simple roots while per iteration it requires one evaluation
of the function and one of its first derivative. For some applications, one may refer to [1,2].

A wide range of problems which are not related to nonlinear equations at first sight
can be expressed as finding the solution of nonlinear equations in special spaces (e.g., in
operator form.) For example, finding approximate-analytic solutions to nonlinear stochastic
differential equations [3] is possible via Chaplygin type solvers which are in fact some
Newton’s iteration in an appropriate operator environment in order to be imposed for
solving such equations [4].

Let us recall that the efficiency of the iterative schemes [5] is calculated via d
√

p wherein
d is the number of functional evaluations per cycle and p is the speed rate. Besides, for
multi-point without-memory iterative schemes, the optimal convergence order is 2n−1,
needing n functional evaluations per cycle [6].

Now some definitions are given which will be used later in this work.
A famous fourth-order two-point method without-memory is the King’s method,

which is given by [7]: yk = xk −
g(xk)
g′(xk)

, γ ∈ R,

xk+1 = yk −
g(yk)
g′(xk)

g(xk)+γg(yk)
g(xk)+(γ−2)g(yk)

.
(1)
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The authors of [8] made the following three steps based on Ostrowski’s method and
the use of the technique of the Chun weight function [9]:

yk = xk −
g(xk)
g′(xk)

, γ ∈ R, tk =
g(zk)
g(xk)

, u(0) = u′(0) = 1,

zk = yk −
g(yk)
g′(xk)

g(xk)+γg(yk)
g(xk)+(γ−2)g(yk)

,

xk+1 = zk − u(tk)
g[xk ,yy ]g(zk)

g[xk ,zy ]g[zk ,yk ]
.

(2)

Ostrowski’s method proposed in [5] has fourth order of convergence as follows:
yk = xk −

g(xk)
g′(xk)

, k ≥ 0,

xk+1 = yk −
g(yk)(yk−xk)
2g(yk)−g(xk)

.
(3)

This method can be rewritten as follows:
yk = xk −

g(xk)
g′(xk)

, k ≥ 0,

xk+1 = yk −
g(yk)
g′(xk)

g(xk)
g(xk)−2g(yk)

.
(4)

This method supports the optimality conjecture of Kung–Traub for the highest possible
convergence order for methods without memory. Accordingly, the efficiency index of
Newton’s and Ostrowski’s methods are:

√
2 ≈ 1.414 and 3

√
4 ≈ 1.587, respectively.

In this work, we turn the famous Ostrowski method into a family of Steffensen-like
methods, ref. [10]. This technique eliminates the disadvantage of calculating the function
derivative. A three self-parameters family of optimal two-step methods is obtained, which
uses the weight function technique to maintain the optimality of the without-memory meth-
ods. In addition, the matrix eigenvalue technique is employed to prove the convergence
order of the proposed methods.

To explain the motivation of the current manuscript clearly we should address why
we need to achieve such high precision results, for which applications? The answer is that
we mostly do not need high precision. Actually the current study is useful in terms of
a theoretical point of view by proposing a general family of methods with memory that
possesses a 100% order improvement without any additional functional evaluations. In
terms of the application point of view, we employ multiple precision arithmetic in numerical
simulations just to re-check the order of convergence in numerical tests. In applications,
clearly our method that has a higher order of convergence reaches the convergence radius
faster, and gives the final solution in reasonable timing.

We describe the structure of the modified Ostrowski’s methods two-step without
memory in Section 2. The improvement of the convergence rate of this family is attained via
employing several parameters of self-acceleration. Such parameters are computed per loop
via the information from the current and the previous loops which help to accelerate the
convergence without adding further incorporation of functional evaluations. The efficiency
index of the new method is two (the highest efficiency index available). The theoretical
proof is presented in Section 3. Computational pieces of evidence are brought forward
in Section 4 and uphold the analytical results. Finally, we provide concluding remarks in
Section 5.

2. Derivation of Methods and Convergence Analysis

By looking at relation (4), it can be seen that this method uses the derivative of
the function in the first and second steps and this shows that the two-point family of
schemes (4) achieves the fourth convergence rate employing three evaluations of func-
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tions only (viz., g(xk), g(yk), and g′(xk)) per full iteration. To derive new methods, we
approximate g′(xk) given in one-step (4) as follows:

g′(xk) ≈ g[wk, xk] =
g(wk)− g(xk)

wk − xk
, wk = xk + βg(xk). (5)

In what follows, the derivative g′(xk) in the second step will be estimated via g[yk ,wk ]
h(tk)

,
where h(tk) is a differentiable function that relies on the real variable

tk =
g(yk)

g(xk)
.

Thus, it is begun by the scheme (4), the approximation (5), and mentions the following
two-point method: wk = xk + βg(xk), yk = xk −

g(xk)
g[wk ,xk ]

, k ≥ 0,

xk+1 = yk − H(tk)
g(xk)

g(xk)−2g(yk)
g(yk)

g[yk ,wk ]
.

(6)

The next theorem illustrates the weight function and under what conditions the
convergence rate of (6) will achieve the optimal order four.

Theorem 1. Let for the open interval D, the function g : D ⊂ R→ R have a simple root x∗ ∈ D.
As long as the starting point x0 is close enough to the exact root, then {xk} obtained via (6) tends
to x∗. If H is a real function under the assumptions H′′(0) < ∞, H′(0) = −1, H(0) = 1 and
β 6= 0 then the fourth order of convergence can be obtained for (6).

Proof. The proof of this theorem is similar to the way of proving convergence order for
similar schemes in the literature, see e.g., ref. [11]. It is hence omitted and we bring the
final error equation, which can be written as follows:

ek+1 =
−1
2

((1 + βg′(x∗))2c2)((−2 + h2 + g′(x∗)β(2 + h2)c2
2 + 2c3))e4

k + O(e5
k), (7)

where ci =
1
i!

g(i)(x∗)
g′(x∗) and using relations h0 = H(0), h1 = H′(0), h2 = H′′(0). Hence, the

fourth-order convergence is established. The proof is ended.

Some of the functions that satisfy Theorem 1 are as follows:

H1(t) = 1− t, H2(t) = 1
1+t ,

H3(t) = (1− t
2 )

2, H4(t) = e−t,

H5(t) = 1+2t
1+3t , H6(t) = cos(t)− sin(t),

H7(t) = arccos(t), H8(t) = t2+1
1+t ,

H9(t) = et − 2t.

(8)

By considering a new accelerator, the following two-step method can be obtained:
wk = xk + βg(xk), k ≥ 0,

yk = xk −
g(xk)

g[wk ,xk ]+γg(wk)
,

xk+1 = yk − H(tk)
g(xk)

g(xk)−2g(yk)
g(yk)

g[yk ,wk ]+γg(wk)
.

(9)
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The method (6) can also be converted into a without memory method by adding two
self-accelerator parameters to a three-parameter method as follows:

wk = xk + βg(xk), k ≥ 0,

yk = xk −
g(xk)

g[wk ,xk ]+γg(wk)
,

xk+1 = yk − H(tk)
g(xk)

g(xk)−2g(yk)
g(yk)

g[yk ,wk ]+γg(wk)+λ(yk−xk)(yk−wk)
.

(10)

Theorem 2. Having similar conditions as in Theorem 1, then, the iteration methods (9) and (10)
have fourth order of convergence and satisfy the following error equations, respectively:

ek+1 =− (1 + βg′(x∗))2(γ + c2)((γ + c2)γ(1 + βg′(x∗))

+ (−1 + βg′(x∗))c2 + c3))e4
k + O(e5

k), (11)

and

ek+1 =− (1 + βg′(x∗))2(γ + c2)(g′(x∗)(1 + βg′(x∗))γ2 − λ + g′(x∗)

(2c2g′(x∗)βγ + (−1 + g′(x∗)β)c2
2 + c3))(g′(x∗))−1e4

k + O(e5
k). (12)

Proof. This is proved as in the Theorem 1; hence, it is omitted.

We also note here that (12) can be rewritten as follows:

ek+1 =− (1 + βg′(x∗))2(γ + c2)(g′(x∗)(1 + βg′(x∗))γ2 − λ− g′(x∗)c2
2

(g′(x∗)β + 1)− c2
2(1 + g′(x∗)β) + c3g′(x∗)))(g′(x∗))−1e4

k + O(e5
k). (13)

3. Further Improvements via the Concept of Methods with Memory
3.1. One-Parametric Method

It is observed by (7) that the convergence rate order for the presented methods (6) is 4
when β 6= 1

g′(x∗) . We could approximate the parameter β by βk:

βk =
−1

g′(x∗)
≈ − 1

N′3(xk)
, (14)

where N3(xk) are defined as follows:

N3(xk) = N3(t; xk, xk−1, wk−1, yk−1). (15)

Combining (6) with (14), one is able to propose a family of two-point Ostrowski–Steffensen-
type methods with memory as comes next:

βk =
1

N′3(xk)
, k = 1, 2, 3, · · · ,

wk = xk + βkg(xk), yk = xk −
g(xk)

g[xk ,wk ]
, k = 0, 1, 2, · · · ,

tk =
g(yk)
g(xk)

, H(0) = 1, H′(0) = 1,

xk+1 = yk − H(tk)
g(yk)

g[yk ,wk ]
g(xk)

g(xk)−2g(yk)
.

(16)

Theorem 3. This theorem has similar conditions to Theorem 1. As long as βk in (16) is computed
recursively by (14), then the convergence R-order would be six.

Proof. The matrix approach discussed initially in [12] is now used to obtain the rate of
convergence for such an accelerated method. Recalling the lower bound for the rate
of convergence in such cases on the single-step s-point procedure technique (14), i.e.,
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xk = ϕ(xk−1, xk−2, · · · , xk−s) would be the spectral radius of M(s) = (mij), corresponding
to the method by having:

mi,i−1 = 1, i = 2, 3, · · · , s,
m1,j = amount of information required at pointxk−j, j = 1, 2, · · · , s,
mi,j = 0 otherwise.

(17)

Then the spectral radius of M = M1.M2. · · · .Ms would be the lower bound for the s-step
method ϕ = ϕ1 · ϕ2 ◦ · · · ◦ ϕs. We can state each of the estimates xk+1, yk, and wk as a
function of available information g(yk), g(wk) and g(xk) from the k-th iterate and g(yk−1),
g(wk−1) and g(xk−1) from the past iterate. From the relations (16) and (17), we create the
corresponding matrices as follows:

xk+1 = ϕ1(yk, wk, xk, yk−1);⇒ M1 =


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0



yk = ϕ2(wk, xk, yk−1, wk−1);⇒ M2 =


1 1 1 0
1 0 0 0
0 1 0 0
0 0 1 0



wk = ϕ3(xk, yk−1, wk−1, xk−1);⇒ M3 =


1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0


Hence, we obtain

M = M1M2M3 =


4 4 0 0
2 2 0 0
1 1 0 0
1 0 0 0

,

for which its eigenvalues are (6, 0, 0, 0). It is derived that the rate of convergence would be
six for the methods with memory (16). The proof is complete now.

3.2. Two-Parametric Method

Now, similar to the prior case, we build the following derivative-free with the memory
method from (9):

βk =
1

N′3(xk)
, γk =

−N′′4 (wk)

2N′4(wk)
, k = 1, 2, 3, · · · ,

yk = xk −
g(xk)

g[xk ,wk ]+γk g(wk)
, wk = xk + βkg(xk), k = 0, 1, 2, · · · ,

tk =
g(yk)
g(xk)

, H(0) = 1, H′(0) = 1,

xk+1 = yk − H(tk)
g(yk)

g[yk ,wk ]+γk g(wk)
g(xk)

g(xk)−2g(yk)
.

(18)

Theorem 4. Let x0 be an initial approach close enough to x∗ of g(x) = 0. If the parameters βk and
γk will compute recursively, then the convergence R-order of (18) is at least 7.

Proof. Using appropriate matrixes in the proof of Theorem 3 and substituting them into
the goal matrix, we obtain that (18) has seventh order of convergence. In fact, the proof is
similar to the proof of Theorem 3 and hence it is omitted.
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3.3. Tri-Parametric Method

The method (10) with memory could be expressed in what follows:

βk =
1

N′3(xk)
, γk =

−N′′4 (wk)

2N′4(wk)
, λk =

N′′′5 (yk)
6 , k = 1, 2, 3, · · · ,

yk = xk −
g(xk)

g[xk ,wk ]+γk g(wk)
, wk = xk + βkg(xk), k = 0, 1, 2, · · · ,

tk =
g(yk)
g(xk)

, H(0) = 1, H′(0) = 1,

xk+1 = yk − H(tk)
g(yk)

g[yk ,wk ]+γk g(wk)+λk(yk−xk)(yk−wk)
g(xk)

g(xk)−2g(yk)
.

(19)

Now, we establish a theorem for determining the rate of (19).

Theorem 5. With the hypotheses of Theorem 3 and that the three parameters βk, γk and λk have
been recursively calculated in (19), then the convergence rate of the with-memory method suggested
in (19) is 7.53.

Proof. From the relation (19) and similar to that used in Theorem 3, we construct the
corresponding matrix as follows:

M = M1M2M3 =



4 4 4 4 0 0
2 2 2 2 0 0
1 1 1 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

,

and its eigenvalues are ( 1
2 (7 +

√
65), 1

2 (7−
√

65), 0, 0, 0, 0). Thus, 1
2 (7 +

√
65) ≈ 7.53 is the

rate of convergence.

We will present the process of the work in the following four sections until the maxi-
mum degree of convergence (i.e., 100%):

(I) Now, we consider three parameters’ iterative methods as follows:

βk =
1

N′6(xk)
, γk =

−N′′7 (wk)
2N′7(wk)

, λk =
N′′′8 (yk)

6 , k = 2, 3, 4, · · · ,

yk = xk −
g(xk)

g[xk ,wk ]+γk g(wk)
, wk = xk + βkg(xk), k = 0, 1, 2, · · · ,

tk =
g(yk)
g(xk)

, H(0) = 1, H′(0) = 1,

xk+1 = yk − H(tk)
g(yk)

g[yk ,wk ]+γk g(wk)+λk(yk−xk)(yk−wk)
g(xk)

g(xk)−2g(yk)
.

(20)

Theorem 6. Having the same conditions as in Theorems 1 and 5, then (20) converges to x∗ with
the rate of convergence 7.77.

Proof. In a similar fashion, one obtains that

M =



4 4 4 4 4 0 0
2 2 2 2 2 0 0
1 1 1 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0


,
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for which its eigenvalues are
(

1
2 (7 +

√
73), 1

2 (7−
√

73), 0, 0, 0, 0, 0
)

, which states that the
order of the with-memory methods (20) is 7.77.

(II) Now, we study tri-parametric iterative methods as follows:

βk =
1

N′9(xk)
, γk =

−N′′10(wk)

2N′10(wk)
, λk =

N′′′11(yk)
6 , k = 3, 4, 5, · · · ,

yk = xk −
g(xk)

g[xk ,wk ]+γk g(wk)
, wk = xk + βkg(xk), k = 0, 1, 2, · · · ,

tk =
g(yk)
g(xk)

, H(0) = 1, H′(0) = 1,

xk+1 = yk − H(tk)
g(yk)

g[yk ,wk ]+γk g(wk)+λk(yk−xk)(yk−wk)
g(xk)

g(xk)−2g(yk)
.

(21)

Theorem 7. With the hypotheses of Theorem 3 and that the three parameters β, γ and λ have been
recursively calculated in (21), then (21) converges to x∗ with the convergence order 7.89.

Proof. Proving this theorem is similar to that of Theorem 3.

(III) Now, we consider three parameters’ iterative methods as follows:

βk =
1

N′12(xk)
, γk =

−N′′13(wk)

2N′13(wk)
, λk =

N′′′14(yk)
6 , k = 4, 5, 6, · · · ,

yk = xk −
g(xk)

g[xk ,wk ]+γk g(wk)
, wk = xk + βkg(xk), k = 0, 1, 2, · · · ,

tk =
g(yk)
g(xk)

, H(0) = 1, H′(0) = 1,

xk+1 = yk − H(tk)
g(yk)

g[yk ,wk ]+γk g(wk)+λk(yk−xk)(yk−wk)
g(xk)

g(xk)−2g(yk)
,

(22)

where N12(xk), N13(wk) and N14(yk) are defined as follows:
N12(xk) = N12(t; xk, wk−1, yk−1, xk−1, yk−2, wk−2, · · · , wk−4, yk−4, xk−4),
N13(wk) = N13(t; wk, xk, wk−1, yk−1, xk−1, yk−2, wk−2, · · · , wk−4, yk−4, xk−4),
N14(yk) = N14(t; yk, wk, xk, wk−1, yk−1, xk−1, yk−2, wk−2, · · · , wk−4, yk−4, xk−4).

(23)

Theorem 8. Having the same assumptions as in Theorem 1, then the proposed family with memory
method defined by (22) has R-order 7.94.

Proof. From the relation (22) and similar to that used in the previous section, we derive
the associated matrices as comes next:

xk+1 = ϕ1(yk, wk, xk, yk−1, wk−1, xk−1, yk−2, wk−3, xk−3); ⇒

M1 =



1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


yk = ϕ2(wk, xk, yk−1, wk−1, xk−1, yk−2, wk−2, xk−2, yk−3); ⇒
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M2 =



1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


wk = ϕ3(xk, yk−1, wk−1, xk−1, yk−2, wk−2, xk−2, yk−3, wk−3); ⇒

M3 =



1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


So, we obtain

M = M1M2M3 =



4 4 4 4 4 4 4 0 0
2 2 2 2 2 2 2 0 0
1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0


.

The only eigenvalue of the matrix M that is positive and real is the number 7.94. It follows
that the convergence rate of (22) is 7.94.

(IV) At the end of this section, we have presented the most important theorem of this
paper, which has the highest degree of convergence of a Ostrowski-like two-point
method, i.e., 7.97:

βk =
1

N′15(xk)
, γk =

−N′′16(wk)

2N′16(wk)
, λk =

N′′′17(yk)
6 , k = 5, 6, 7, · · · ,

yk = xk −
g(xk)

g[xk ,wk ]+γk g(wk)
, wk = xk + βkg(xk), k = 0, 1, 2, · · · ,

tk =
g(yk)
g(xk)

, H(0) = 1, H′(0) = 1,

xk+1 = yk − H(tk)
g(yk)

g[yk ,wk ]+γk g(wk)+λk(yk−xk)(yk−wk)
g(xk)

g(xk)−2g(yk)
.

(24)

Theorem 9. With the hypotheses of Theorem 3 and that the three parameters β, γ and λ have
recursively calculated, then (24) has R-order 7.97 ≈ 8 and its efficiency index is 7.97

1
3 ≈ 2.

Proof. From the relation (24) and similar to that used in the previous section, we construct
the corresponding matrices as follows:

xk+1 = ϕ1(yk, wk, xk, yk−1, wk−1, xk−1, yk−2, wk−2, xk−2, yk−3);
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⇒ M1 =



1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


yk = ϕ2(wk, xk, yk−1, wk−1, xk−1, yk−2, wk−2, xk−2, yk−3, wk−3);

⇒ M2 =



1 1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


wk = ϕ3(xk, yk−1, wk−1, xk−1, yk−2, wk−2, xk−2, yk−3, wk−3, xk−3);⇒

M3 =



1 1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


.

Thus, we get

M = M1M2M3 =



4 4 4 4 4 4 4 4 0 0
2 2 2 2 2 2 2 2 0 0
1 1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0


,

and its eigenvalues are (7.97243,−0.48621 + 0.71846i,−0.48621 + 0.71846i, 0, 0, 0, 0, 0, 0, 0).
This states that 7.97 ≈ 8 is the analytical order and the efficiency index is 7.97

1
3 ≈ 2.

4. Numerical Results

The principal purpose of numerical examples is to verify the validity of the theoretical
developments through a variety of test examples using high accuracy computations by
use of the Mathematica program. All computations were performed using Mathematica
11 [13].
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In the tables, the abbreviations Div, TNE and Iter are used as follows:

TNE: Total Number of Evaluations required for a method to do the specified iterations;
Iter: The number of iterations;
The errors |xk − α| of estimations to the simple zeros of gi(x), i = 1, 2, 3;
The computational order of convergence (rc) [14] can be calculated via:

rc =
log |g(xk)/g(xk−1)|

log |g(xk−1)/g(xk−2)|
,

COC =
log |(xk − x∗)/(xk−1 − x∗)|

log |(xk−1 − x∗)/(xk−2 − x∗)| .
(25)

We shall check the effectiveness of the new without and with memory methods.
We employ the presented methods (6), (16), (18), (19) and (24) denoted by TM4, TM6,
TM7, TM7.5 and TM8, respectively (for β0 = γ0 = λ0 = 0.01), to solve some nonlinear
equations. We compared our methods and some known methods as follows: Campos et al.
(CCTVM) [15], Choubey–Jaiswal (CJM) [16], Chun’s method (CM) [17], Cordero et al.
(CLKTM) [18], Cordero et al. (CLTAM) [19], Jaiswal’s method (JM) [20], Jarratt’s method
(JM) [21], Kung–Traub’s method (KTM) [6], Maheshwari’s method (MM) [22], Kansal et al.’s
method (KKBM) [23], Lalehchini et al.’s method (LLMM) [24], Mohammadi et al.’s method
(MLAM) [25], Ostrwoski’s method (OM) [5], Soleymani et al.’s method (SLTKM) [11],
Torkashvand–Kazemi (TKM) [26], Traub’s method (TM) [27], Wang’s method (WM) [28]
and Zafar et al.’s method (ZYKZM) [29].

In Tables 1–7, we show the numerical results obtained by applying the different
methods with a memory for approximating the solution of gi(x) = 0, i = 1, 2, 3, given
as follows: 

g1(x) = x5 + x4 + 4x2 − 15, x∗ ≈ 1.34, x0 = 1.1,
g2(x) = x3 + 4x2 − 10, x∗ ≈ 1.36, x0 = 1,
g3(x) = 10xe−x2 − 1, x∗ ≈ 1.67, x0 = 1.

Here, ≈ stands for an approximation of the solution that we have written only to
provide an overview of the solution. All calculations are performed using 2000 floating
point arithmetic in Wolfram Mathematica. This means that we care about very small
numbers in terms of magnitude and we do not allow the programming package to consider
them as zero automatically. Actually, higher orders can only be seen in the convergence
phase and more clearly in high precision computing. The numerical results shown in
Tables 1–7 confirmed the theoretical discussions and the efficiency of the proposed scheme
under different choices of the weight functions.

Table 1. Comparison of various iterative schemes (first part).

Functions OM
[5]

JM
[21]

KTM
[6]

MM
[22]

CM
[17]

g1,
x0 = 1.1

|xk+1 − xk| 1.47E-43 3.75E-43 5.39E-31 1.08E-18 1.47E-43
|g(xk+1)| 9.19E-171 4.04E-169 5.40E-120 2.13E-703 9.19E-171
Iter 4 4 4 4 4
rc 4.00 4.00 4.00 3.99 4.00

g2,
x0 = 1

|xk+1 − xk| 3.60E-47 3.60E-47 3.36E-38 3.85E-28 3.60E-47
|g(xk+1)| 2.45E-186 2.45E-186 4.37E-150 1.60E-109 2.45E-186
Iter 4 4 4 4 4
rc 4.00 4.00 4.00 4.00 4.00

g3,
x0 = 1

|xk+1 − xk| 1.56E-29 4.40E-24 7.32E-28 3.43E-26 1.56E-29
|g(xk+1)| 1.35E-115 7.72E-94 1.33E-108 1.31E-101 1.35E-115
Iter 4 4 4 4 4
rc 4.00 4.00 4.00 4.00 4.00
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Table 2. Comparison of various iterative schemes (second part).

Functions TM4 (6),
H1(t)

TM4 (6),
H2(t)

TM4 (6),
H3(t)

TM4 (6),
H4(t)

TM4 (6),
H5(t)

g1,
x0 = 1.1

|xk+1 − xk| 4.24E-12 0E-0 2.89E-10 7.74E-8 -
|g(xk+1)| 1.80E-45 6.39E-14 1.62E-37 1.86E-27 4.98E-12
Iter 3 3 3 3 3
rc 3.99 4.11 4.00 4.00 3.83

g2,
x0 = 1

|xk+1 − xk| 7.94E-12 2.17E-9 6.57E-15 8.14E-15 -
|g(xk+1)| 6.12E-45 3.42E-35 1.47E-57 3.57E-59 7.01E-11
Iter 3 3 3 3 3
rc 3.99 4.00 3.99 3.97 3.63

g3,
x0 = 1

|xk+1 − xk| 8.11E-9 6.13E-10 5.94E-9 3.76E-9 1.81E-8
|g(xk+1)| 9.42E-33 7.08E-39 2.01E-33 2.12E-34 4.87E-31
Iter 3 3 3 3 3
rc 4.00 4.07 4.00 4.00 4.01

Table 3. Comparison of various iterative schemes (third part).

Functions TM6 (16),
H1(t)

TM6 (16),
H2(t)

TM6 (16),
H3(t)

TM6 (16),
H4(t)

TM6 (16),
H5(t)

g1,
x0 = 1.1

|xk+1 − xk| 1.02E-90 9.59E-38 7.76E-85 1.60E-63 1.64E-36
|g(xk+1)| 1.05E-538 7.07E-221 1.98E-503 1.55E-381 1.82E-219
Iter 4 4 4 4 4
rc 6.00 6.00 6.00 6.00 6.00

g2,
x0 = 1

|xk+1 − xk| 1.70E-100 1.09E-78 1.58E-125 8.85E-104 3.53E-28
|g(xk+1)| 2.03E-599 1.41E-468 1.28E-749 3.93E-619 1.58E-170
Iter 4 4 4 4 4
rc 6.00 6.00 6.00 6.00 6.00

g3,
x0 = 1

|xk+1 − xk| 2.96E-84 1.97E-84 2.69E-84 2.43E-84 7.65E-85
|g(xk+1)| 1.246E-501 1.06E-502 6.92E-502 3.77E-502 3.67E-505
Iter 4 4 4 4 4
rc 6.00 6.00 6.00 6.00 6.00

Table 4. Comparison of various iterative schemes (fourth part).

Functions TM7 (18),
H1(t)

TM7 (18),
H2(t)

TM7 (18),
H3(t)

TM7 (18),
H4(t)

TM7 (18),
H5(t)

g1,
x0 = 1.1

|xk+1 − xk| 8.86E-130 1.66E-55 2.63E-119 2.95E-92 3.80E-56
|g(xk+1)| 3.69E-903 3.02E-383 7.51E-830 1.68E-640 9.89E-388
Iter 4 4 4 4 4
rc 7.00 7.00 7.00 7.00 7.00

g2,
x0 = 1

|xk+1 − xk| 5.63E-147 6.47E-117 7.66E-186 1.89E-150 3.78E-54
|g(xk+1)| 3.62E-1033 6.95E-816 2.26E-1298 1.25E-1050 1.61E-376
Iter 4 4 4 4 4
rc 7.00 7.00 7.00 7.00 7.00

g3,
x0 = 1

|xk+1 − xk| 3.32E-119 1.70E-119 2.83E-119 2.40E-119 3.43E-120
|g(xk+1)| 4.38E-827 3.99E-830 1.43E-828 4.52E-829 5.48E-835
Iter 4 4 4 4 4
rc 7.00 6.99 7.00 7.00 7.00
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Table 5. Comparison of various iterative schemes (fifth part).

Functions
TM7.5

(19),
H1(t)

TM7.5
(19),

H2(t)

TM7.5
(19),

H3(t)

TM7.5
(19),

H4(t)

TM7.5
(19),

H5(t)

g1,
x0 = 1.1

|xk+1 − xk| 1.08E-160 2.53E-69 5.73E-147 5.42E-114 2.62E-69
|g(xk+1)| 1.97E-1205 1.11E-518 7.52E-1102 7.82E-584 2.70E-516
Iter 4 4 4 4 4
rc 7.51 7.51 7.50 7.50 7.47

g2,
x0 = 1

|xk+1 − xk| 1.58E-188 2.99E-148 3.39E-237 3.84E-192 1.21E-64
|g(xk+1)| 5.80E-1505 9.32E-1183 2.50E-1894 6.85E-1534 6.55E-514
Iter 4 4 4 4 4
rc 8.00 8.00 8.00 8.00 8.00

g3,
x0 = 1

|xk+1 − xk| 4.23E-137 1.89E-137 3.49E-137 2.87E-137 2.78E-138
|g(xk+1)| 1.97E-1027 4.76E-1030 4.70E-1028 1.07E-1028 2.63E-1036
Iter 4 4 4 4 4
rc 7.51 7.51 7.51 7.51 7.50

Table 6. Comparison of various iterative schemes (sixth part).

Functions TM8 (24),
H1(t)

TM8 (24),
H2(t)

TM8 (24),
H3(t)

TM8 (24),
H4(t)

TM8 (24),
H5(t)

g1,
x0 = 1.1

|xk+1 − xk| 3.27E-167 2.00E-69 7.97E-152 5.40E-117 1.11E-69
|g(xk+1)| 4.02E-1331 8.04E-549 4.95E-1208 2.19E-929 7.19E-551
Iter 4 4 4 4 4
rc 8.00 8.00 8.003 8.00 8.00

g2,
x0 = 1

|xk+1 − xk| 1.58E-188 2.99E-148 3.39E-237 3.84E-192 1.21E-64
|g(xk+1)| 5.80E-1505 9.32E-1183 2.50E-1894 6.85E-1534 6.55E-514
Iter 4 4 4 4 4
rc 8.00 8.00 8.003 8.00 8.00

g3,
x0 = 1

|xk+1 − xk| 3.19E-144 1.42E-144 2.63E-144 2.16E-144 2.06E-145
|g(xk+1)| 1.31E-1149 2.04E-1152 2.83E-1150 5.79E-1151 3.95E-1159
Iter 4 4 4 4 4
rc 8.00 8.00 8.003 8.00 8.00

Table 7. Comparison of various iterative schemes (seventh part).

Functions
CLKTM
(b = 1)

[18]

CLTAMM
(A = 1)

[19]

KKBM
(a = 1) Cas 1

[23]

ZYKZM,
Method F1

[29]

TM8
(24),

H6(t)

g1,
x0 = 1.1

|xk+1 − xk| 3.15E-84 2.32E-115 1.21E-106 2.46E-108 5.90E-111
|g(xk+1)| 4.20E-506 2.90E-802 3.44E-741 4.11E-810 4.50E-881
Iter 4 4 4 4 4
rc 6.00 7.00 7.00 7.49 8.00

g2,
x0 = 1

|xk+1 − xk| 1.85E-100 2.26E-177 7.02E-157 1.96E-154360 1.47E-159
|g(xk+1)| 1.43E-599 4.91E-1416 1.23E-1095 3.15E-1232 3.19E-1273
Iter 4 4 4 4 4
rc 6.00 8.00 7.00 8.00 8.00

g3,
x0 = 1

|xk+1 − xk| 3.11E-87 8.95E-112 1.85E-119 8.71E-136 4.69E-144
|g(xk+1)| 1.50E-520 2.64E-777 7.30E-830 4.42E-1025 2.83E-1148
Iter 4 4 4 4 4
rc 6.00 6.99 6.99 7.51 8.00

The question may arise now of do we really need to use the small numbers (e.g., 2.83E-1148
which stands for 2.83× 10−1148 in Table 7)? The answer is ‘no’; to illustrate, we must state that
sometimes in applications, results up to at most 100 digits are enough. However, here we used
such a number of high floating point arithmetic on purpose to check the computational order of
convergence (25). In fact, for higher order methods, the higher speed can only be seen in the
number of meaningful decimal places when the method takes several iterations.

In addition, in Table 8 a comparison among various schemes is given, which again
states that the proposed methods with memory possess a higher computational efficiency
index and can be employed in solving nonlinear equations.
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Table 8. Comparison improvement of convergence order of the proposed method with other schemes.

With Memory
Methods

Number of
Sub-Steps

Optimal
Order COC Percentage

Increase

CCTVM [15] 2 4.00 4.24 5.9%
CJM [16] 2 4.00 4.56 14.03%
CJM [16] 2 4.00 4.79 19.78%
CJM [16] 2 4.00 5.00 20%
CJM [16] 3 8.00 9.00 12.5%
CJM [16] 3 8.00 9.58 19.79%
CJM [16] 3 8.00 9.80 22.44%
CJM [16] 3 8.00 10.00 25%
CLKTM [18] 2 4.00 6.00 50%
CLTAMM [19] 2 4.00 7.00 75%
JM [20] 2 4.00 7.00 75%
JM [20] 3 8.00 14.00 75%
KKBM [23] 2 4.00 7.00 75%
LLMM [24] 2 4.00 6.32 57.93%
MLAM [25] 2 4.00 5.95 48.75%
SLTKM [11] 2 4.00 7.22 80.58%
SLTKM [11] 2 4.00 12.00 50%
TKM [26] 3 8.00 14.00 75%
TKM [26] 4 16.00 28.00 75%
TM [27] 1 2.00 2.41 20.5%
WM [28] 2 4.00 4.24 5.75%
WM [28] 2 4.00 4.45 11.23%
WZM [30] 2 4.00 4.56 14.03%
WZM [30] 3 8.00 10.13 26.64%
ZYKZM [29] 2 4.00 7.5 88.28%
(16) 2 4.00 6.00 50%
(18) 2 4.00 7.00 75%
(19) 2 4.00 7.53 88.28%
(20) 2 4.00 7.77 94.25%
(21) 2 4.00 7.89 97.25%
(23) 2 4.00 7.94 98.5%
(24) 2 4.00 7.97 99.25%

We end this section by pointing out that the extension of our methods for the system
of nonlinear equations (see some application of nonlinear system in [31–33]) require the
computation of a divided difference operator (DDO) which would be a dense matrix. This
dense structure of the DDO matrix restricts the usefulness of such methods. Because of this,
we consider our proposed methods only for the scalar case.

5. Conclusions

In this paper, we have used the idea of the weight function and have turned Os-
trowski’s method into an optimal order method. We have constructed the with-memory
methods by using the same number of evaluations that do not require the calculation of a
function derivative. Then, with the advent of accelerator parameters and eigenvalues of
matrices, we created the with memory methods with higher orders. By interpolatory acceler-
ator parameters, the methods with memory reached up to 100% convergence improvement.
Numerical tests were intended to verify the better performance of the proposed methods
over the others. Employing such an efficient numerical scheme for practical problems in
solving stochastic differential equations [34] is worth investigating in future work.
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