On Ostrowski Type Inequalities via the Extended Version of Montgomery’s Identity
Abstract
:1. Introduction
2. Ostrwoski Type Inequalities via the Extended Montgomery Identity
3. Ostrwoski Type Inequalities via the Extended Montgomery Identity Using Greens’ Functions
4. Estimations of the Difference of Two Integral Means
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrowski, A. Über die Absolutabweichung einer Differentiebaren Funktion von Ihren Integralmittelwert. Comment. Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pečarić, J.; Fink, A.M. Inequalities for Functions and Their Integrals and Derivatives; Kluwer Academic Publishers Groups: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Aljinovic, A.A.; Pečarić, J.; Vukelic, A. On Some Ostrowski Type Inequalities Via Montgomery Identity Furthermore, Taylor’s Formula II. Tamkang J. Math. 2005, 36, 279–301. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.R.; Pečarić, J.; Praljak, M. Popoviciu Type Inequalities for n-convex Functions via Extension of Montgomery Identity. An. Şt. Univ. Ovidius Constanţa 2016, 24, 161–188. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.R.; Pečarić, J.; Praljak, M.; Varošanec, S. General Linear Inequalities and Positivity/Higher Order Convexity. Monogr. Inequalities Elem. Zagreb 2017, 12, 269. [Google Scholar]
- Pečarič, J.; Perušić, A.; Smoljak, K. Generalizations of Steffensen’s Inequality by Abel-Gontscharoff Polynomial. Khayyam J. Math. 2015, 1, 45–61. [Google Scholar]
- Butt, S.I.; Mehmood, N.; Pečarić, J. New Generalization of Popoviciu Type Inequalities via New Green Functions and Taylor’s Formula. Submitted.
- Khan, A.R.; Pečarić, J.; Praljak, M. Weighted Averages of n-convex Functions via Extension of Montgomery’s Identity. Arab. J. Math. 2019, 9, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.R.; Pečarić, J. Positivity of Sums and Integrals for n-Convex Functions via Extension of Montgomery Identity Using New Green Functions. 2022; Submitted. [Google Scholar]
- Niezgoda, M. Grüss and Ostrowski Type Inequalities. Appl. Math. Comput. 2011, 217, 9779–9789. [Google Scholar] [CrossRef]
- Pečarić, J.; Penava, M.R. Weighted Ostrowski and Grüss Type Inequalities. J. Inequal. Spec. Funct. 2020, 11, 12–23. [Google Scholar]
- Dragomir, S.S. A Functional Generalization of Ostrowski Inequality via Montgomery Identity. Acta Math. Univ. Comenian. 2015, 84, 63–78. [Google Scholar]
- Dragomir, S.S. Ostrowski Type Inequalities for Lebesgue Integral: A Survey of Recent Results. Aust. J. Math. Anal. Appl. 2017, 14, 1–287. [Google Scholar]
- Dragomir, S.S. Ostrowski Type Inequalities for Riemann Liouville Fractional Integrals of Absolutely Continuous Functions in Terms of ∞—Norm. RGMIA Res. Rep. Coll. 2017, 20, 1–14. [Google Scholar]
- Kvesić, L.; Pečarić, J.; Penava, M.R. Generalizations of Ostrowski Type Inequalities via Hermite Polynomials. J. Inequal. Appl. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Aljinovic, A.A.; Pečarić, J.; Peric, I. Estimates of the Difference between Two Weighted Integral Means via Weighted Montgomery Identity. Math. Inequal. Appl. 2004, 7, 315–336. [Google Scholar]
- Barnett, N.S.; Cerone, P.; Dragomir, S.S.; Fink, A.M. Comparing Two Integral Means for Absolutely Continuous Mappings Whose Derivatives are in L∞[a,b] and Applications. Comput. Math. Appl. 2002, 44, 241–251. [Google Scholar] [CrossRef]
- Matic, M.; Pečarić, J. Two-point Ostrowski Inequality. Math. Inequal. Appl. 2019, 4, 215–221. [Google Scholar]
- Pečarić, J.; Perić, I.; Vukelić, A. Estimations of the Difference of Two Integral Means Via Euler-Type Identities. Math. Inequal. Appl. 2004, 7, 365–378. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.R.; Nabi, H.; Pečarić, J.E. On Ostrowski Type Inequalities via the Extended Version of Montgomery’s Identity. Mathematics 2022, 10, 1113. https://doi.org/10.3390/math10071113
Khan AR, Nabi H, Pečarić JE. On Ostrowski Type Inequalities via the Extended Version of Montgomery’s Identity. Mathematics. 2022; 10(7):1113. https://doi.org/10.3390/math10071113
Chicago/Turabian StyleKhan, Asif R., Hira Nabi, and Josip E. Pečarić. 2022. "On Ostrowski Type Inequalities via the Extended Version of Montgomery’s Identity" Mathematics 10, no. 7: 1113. https://doi.org/10.3390/math10071113
APA StyleKhan, A. R., Nabi, H., & Pečarić, J. E. (2022). On Ostrowski Type Inequalities via the Extended Version of Montgomery’s Identity. Mathematics, 10(7), 1113. https://doi.org/10.3390/math10071113