Security and Efficiency of Linear Feedback Shift Registers in GF(2n) Using n-Bit Grouped Operations
Abstract
:1. Introduction
2. Mathematical Background
2.1. Linear Feedback Shift Registers
2.2. Binary Equivalent Model
3. Efficient LFSR Implementation
Algorithm 1: Computation of connection polynomial . |
input : LFSR output: in LFSR
|
3.1. Computation of Shifts
3.2. Computation of Seeds
3.3. Grouped Operations
4. Primitiveness Test
Algorithm 2: Primitiveness test. |
|
5. Efficiency and Security
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menezes, A.J.; Van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Ratón, FL, USA, 2020. [Google Scholar]
- Shannon, C. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Golomb, S.W. Shift Register Sequences, 3rd Revised ed.; Aegean Park Press: Laguna Hills, CA, USA, 2017. [Google Scholar]
- Padgette, J.; Bahr, J.; Batra, M.; Holtmann, M.; Smithbey, R.; Lily, C.; Scarfone, K. Guide to Bluetooth Security; NIST: Gaithersburg, MD, USA, 2017. [Google Scholar]
- Jindal, P.; Singh, B. RC4 Encryption-A Literature Survey. Procedia Comput. Sci. 2015, 46, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Biham, E.; Dunkelman, O. Cryptanalysis of the A5/1 GSM stream cipher. In Proceedings of the International Conference on Cryptology in India, Calcutta, India, 10–13 December 2000; pp. 43–51. [Google Scholar]
- Kiyomoto, S.; Tanaka, T.; Sakurai, K. K2: A stream cipher algorithm using dynamic feedback control. In Proceedings of the International Conference on Security and Cryptography, SECRYPT, Barcelona, Spain, 28–13 July 2007; Hernando, J., Fernández-Medina, E., Malek, M., Eds.; INSTICC Press: Lisboa, Portugal, 2007; pp. 204–213. [Google Scholar]
- George, K.; Michaels, A.J. Designing a Block Cipher in Galois Extension Fields for IoT Security. IoT 2021, 2, 669–687. [Google Scholar] [CrossRef]
- Panario, D.; Reis, L. The functional graph of linear maps over finite fields and applications. Des. Codes Cryptogr. 2019, 87, 437–453. [Google Scholar] [CrossRef]
- ETSI/SAGE. Specification of the 3GPP, Confidentiality and Integrity Algorithm UEA2 and UIA2; Document 2: SNOW 3G Specification; ETSI: Sophia Antipolis, France, 2006. [Google Scholar]
- Caforio, A.; Balli, F.; Banik, S. Melting SNOW-V: Improved lightweight architectures. J. Cryptogr. Eng. 2020, 12, 53–73. [Google Scholar] [CrossRef]
- Ekdahl, P.; Johansson, T.; Maximov, A.; Yang, J. A new SNOW stream cipher called SNOW-V. IACR Trans. Symmetr. Cryptol. 2019, 3, 1–42. [Google Scholar] [CrossRef]
- Ekdahl, P.; Maximov, A. SNOW-Vi: An Extreme Performance Variant of SNOW-V for Lower Grade CPUs. In Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec ’21, Abu Dhabi, United Arab Emirates, 28 June–2 July 2021; pp. 261–272. [Google Scholar]
- Avanzi, R.; Theriault, N. Effects of optimization for software implementations of small binary field arithmetic. In International Workshop on the Arithmetic of Finite Fields; Springer: Berlin/Heidelberg, Germany, 2007; pp. 69–84. [Google Scholar]
- Delgado-Mohatar, O.; Fúster-Sabater, A.; Sierra, J.M. Performance evaluation of highly efficient techniques for software implementation of LFSR. Comput. Electr. Eng. 2011, 37, 1222–1231. [Google Scholar] [CrossRef]
- Komo, J.J.; Lam, M.S. Primitive Polynomials and m-sequences over GF(qm). IEEE Trans. Inf. Theory 1993, 39, 643–647. [Google Scholar] [CrossRef]
- Park, W.J.; Komo, J.J. Relationships Between m-Sequences over GF(q) and GF(qm). IEEE Trans. Inf. Theory 1989, 35, 183–186. [Google Scholar] [CrossRef]
- Massey, J.L. Shift register synthesis and BCH decoding. IEEE Trans. Inf. Theory 1969, 15, 122–127. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa García, J.; Cotrina, G.; Peinado, A.; Ortiz, A. Security and Efficiency of Linear Feedback Shift Registers in GF(2n) Using n-Bit Grouped Operations. Mathematics 2022, 10, 996. https://doi.org/10.3390/math10060996
Espinosa García J, Cotrina G, Peinado A, Ortiz A. Security and Efficiency of Linear Feedback Shift Registers in GF(2n) Using n-Bit Grouped Operations. Mathematics. 2022; 10(6):996. https://doi.org/10.3390/math10060996
Chicago/Turabian StyleEspinosa García, Javier, Guillermo Cotrina, Alberto Peinado, and Andrés Ortiz. 2022. "Security and Efficiency of Linear Feedback Shift Registers in GF(2n) Using n-Bit Grouped Operations" Mathematics 10, no. 6: 996. https://doi.org/10.3390/math10060996
APA StyleEspinosa García, J., Cotrina, G., Peinado, A., & Ortiz, A. (2022). Security and Efficiency of Linear Feedback Shift Registers in GF(2n) Using n-Bit Grouped Operations. Mathematics, 10(6), 996. https://doi.org/10.3390/math10060996