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Abstract: Many stream ciphers employ linear feedback shift registers (LFSRs) to generate pseudoran-
dom sequences. Many recent LFSRs are defined in GF(2n) to take advantage of the n-bit processors,
instead of using the classic binary field. In this way, the bit generation rate increases at the expense of
a higher complexity in computations. For this reason, only certain primitive polynomials in GF(2n)

are used as feedback polynomials in real ciphers. In this article, we present an efficient implementa-
tion of the LFSRs defined in GF(2n). The efficiency is achieved by using equivalent binary LFSRs
in combination with binary n-bit grouped operations, n being the processor word’s length. This
improvement affects the general considerations about the security of cryptographic systems that
uses LFSR. The model also allows the development of a faster method to test the primitiveness of
polynomials in GF(2n).

Keywords: LFSR; stream cipher; m-sequence; primitive polynomial; extended Galois field; symmetric
encryption

MSC: 3304; 05C31; 90C23; 46B85; 6804

1. Introduction

The symmetric cryptographic systems known as stream ciphers base their operation
on the generation of binary sequences that are combined with the message to be encrypted
by binary addition (XOR operation). The sequence used in the transmitter must also be
generated in the receiver to recover the message by applying the XOR operation to the
received ciphertext [1]. The concept of perfect secrecy defined by Shannon [2] establishes
as a condition that the binary sequences used to encrypt the message (ciphering sequences)
are random, have a length greater than or equal to the message, and are one time use.
Although excellent random generators exist, the need to reproduce the sequence in the
receiver makes it necessary to use pseudo-random sequences instead of true random ones.
Therefore, pseudorandom number generators (PRNGs) constitute the fundamental part of
any stream cipher.

One of the simplest and most widely used methods to generate cryptographic pseudo-
random sequences is the linear feedback shift register (LFSR) [3]. This generator stands
out for its simplicity and for the good statistical properties of the generated sequences.
In addition, the behavior of the LFSR is completely characterized by the polynomial that
defines the applied feedback. Thus, if the polynomial is primitive, the generated sequence
reaches the maximum length, which is known as the m-sequence. However, these se-
quences are easily predictable from 2L known elements of the sequence generated by an
L-stage LFSR. This makes the sequences obtained from an LFSR not directly usable. Instead,
non-linear filtering or non-linear combinations of various LFSRs have to be applied to
ensure the cryptographic security of stream ciphers, such as those used in mobile and
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wireless communication systems, e.g., Bluetooth [4], wireless area networks [5], or GSM [6].
On the other hand, although LFSRs are generically defined on a finite field GF(q), practical
implementations of these ciphers are carried out on GF(2) to integrate with bitwise opera-
tions. Nevertheless, these operations are clearly inefficient when using current processors
that work with 16-, 32-, or 64-bit words. For this reason, the extended Galois fields GF(2n),
where 2n matches the processor word length, have been analyzed to substitute GF(2) in
cryptographic applications [7–9]. In the particular case of LFSR-based stream ciphers, the
SNOW 3G algorithm [10] is currently used in 3G and 4G mobile communication systems,
and several proposals have recently appeared to be applied to 5G communications [11–13].
However, computations on an extended field are time consuming, much more than in the
base field [14]. Although the bit generation rate improves n times the binary case, the
overall performance of the system does not, sometimes being even lower. In fact, several
methods have been developed to reduce computational time, such as precomputed tables,
optimized algorithms for multiplication [15], or the use of representations of the GF(2n)
elements in terms of GF(2m) elements with m < n. In contrast to binary case, where any
primitive polynomial guarantees a sequence of maximum length, only certain primitive
polynomials that facilitate its implementation are used in extended fields. This means
that they do not require excessive resource consumption, as the SNOW 3G case does,
defined to work on devices with 32-bit processors by combining operations with 32-bit and
8-bit arguments. On the other hand, the identification of primitive polynomials in GF(2n)
requires a much higher computational effort than in the binary case.

This article presents two methods that reduce the execution time for the implemen-
tation of an LFSR and the search for primitive polynomials in the extended filed GF(2n).
These methods are based on the model that establishes a direct relationship between the m-
sequence generated by an LFSR in GF(2n) and the interleaving of n m-sequences generated
by n LFSRs in GF(2). This relationship was used by Komo and Lam [16] to build primi-
tive polynomials in GF(2n) in terms of primitive polynomials in GF(2), establishing the
relationships that must hold between both polynomials. We propose to use these relation-
ships in the opposite direction; that is, we propose to represent the primitive polynomial
over GF(2n) in terms of binary LFSRs. In this way, the same sequences will be generated
using only binary operations (XOR). However, moving from n-bit word operations to bit
operations would be back to square one, since the main reason for using LFSR on extended
fields is to take advantage of the capabilities of n-bit processors where bit operations are
inefficient. Taking into account that the n binary LFSRs that allow generating the same
sequence as the LFSR in GF(2n) have all the same primitive feedback polynomial in GF(2),
the previous obstacle can be easily overcame. Thus, the calculation of the bit operations of
the n binary LFSRs can be performed jointly, giving rise to XOR operations between n-bit
words and eliminating the inefficiency generated by single-bit operations in this type of pro-
cessor. The efficiency improvement provided by the proposed implementation turns it into
a method especially suitable for cryptanalysis tasks where any execution time reduction in
the systems under analysis is very appreciated. Therefore, security assessments performed
to cryptosystems based on LFSR in extended fields must take into account the proposed
implementation to report a more realistic security level. Additionally, the proposed method
allows any primitive polynomial in GF(2n) to be used as feedback polynomial of an LFSR,
thus overcoming the current limitations.

The rest of the paper is organized as follows. In Section 2, the mathematical back-
ground and notation are introduced, with special emphasis on the LFSR fundamentals and
the relationships between the m-sequences generated in extended and base fields, GF(qn)
and GF(q). Section 3 describes the proposed implementation for the particular case of
LFSRs defined in GF(2n) through a different and more efficient way. Section 4 contains
the algorithm proposed to test the primitiveness of polynomials making use of the same
relationships. Finally, discussion about security and efficiency of the implementations and
conclusion are included in Sections 5 and 6, respectively.
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2. Mathematical Background

Let GF(q) be the finite field of q elements, q being a prime, and GF[q, x] the set of
all polynomials with coefficients in GF(q). Equivalently, let GF(qn) be the finite field
of qn elements, and GF[qn, x] the set of all polynomials with coefficients from GF(qn).
A generator of the cyclic group of a finite field is called a primitive element of that field.
Hence, a polynomial p(x) ∈ GF[q, x] of degree m ≥ 1 is called primitive over GF(q) if it
is the minimal polynomial over GF(q) of a primitive element α ∈ GF(qn). A primitive
polynomial h(x) of degree n allows one to construct GF(qn) in such a way that:

GF(qn) ≈ GF[q, x]/h(x) (1)

The addition and multiplication in GF(qn) are the ones in GF[q, x], but performing the
module h(x) reduction, as all the elements in GF(qn) can be represented as polynomials of
degree less than n with coefficients in GF(q). On the other hand, any element a ∈ GF(qn)
can be expressed in terms of a basis {αn−1, . . . , α2, α, 1}, α being a root of h(x) in GF(qn).
Consequently, any element a ∈ GF(qn) can be written as the vector (an−1, . . . , a1, a0) where:

a = an−1αn−1 + · · ·+ a1α + a01. (2)

For q = 2, it is very common to use the hexadecimal notation as a compact repre-
sentation of the elements in GF(qn). Thus, if we use h(x) = x8 + x4 + x3 + x2 + 1 to
construct GF(28), α being a root of h(x), as any element in GF(28) can be represented as
a power of α, we can write the element α3 as (0, 0, 0, 0, 1, 0, 0, 0) or 0x08 and the element
α10 = α6 + α5 + α4 + α2 as (0, 1, 1, 1, 0, 1, 0, 0) or 0x74. Note that the powers of α correspond
to the vector components in descending order, beginning from the left, to facilitate the
conversion to and from hexadecimal values.

2.1. Linear Feedback Shift Registers

An LFSR defined over GF(q) is a collection of L memory cells bi, 0 ≤ i ≤ L− 1, whose
contents belong to that field and are updated synchronously by a master clock, by the
following equations:

γ = bL−1c1 + bL−2c2 + · · ·+ b1cL−1 + b0cL,
bi = bi+1, 0 ≤ i ≤ L− 2,
bL−1 = γ,

(3)

giving rise to the sequence D = d0d1d2 · · · , which is completely determined by the initial
state of the cells, named seed, and the feedback coefficients ci ∈ GF(q), 1 ≤ i ≤ L according
to the linear recurrence:

di = di−1c1 + di−2c2 + · · ·+ d1cL−1 + d0cL, (4)

where d0, d1, · · · , dL−1 correspond to the seed (see Figure 1). The length of the sequence
D can be analyzed in terms of the connection polynomial p(x) composed with the feed-
back coefficients:

p(x) = c0 + c1x + c2x2 + · · ·+ cL−1xL−1 + cLxL, (5)

in such a way that the maximal sequence length qL − 1 is achieved when p(x) is primitive.
In such a case, the sequence is called m-sequence and is independent from the chosen seed.

Stream ciphers are mainly based on LFSRs defined over finite fields with q = 2 [1].
Hence, the cell content is one bit, and the addition and multiplication correspond to XOR
and AND operations, respectively. However, for efficiency reasons, in the generation
process, LFSRs defined in GF(2n) are also being used in current communication systems.
When LFSR is defined in this extension field, the cells contain n-bit words, where n matches
the processor’s word length. Although the equations that govern the LFSR are the same,
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as described above, addition and multiplication are defined as polynomial addition and
multiplication modulus h(x), the polynomial used to construct the GF(2n). From now
on, we shall use the notation < L, p(x) > to refer to an LFSR with L cells in GF(2) and
connection polynomial p(x) ∈ GF[2, x] of degree L. The form < L, p(x), n > is for an LFSR
of L cells in GF(2n) and connection polynomial p(x) ∈ GF[2n, x] of degree L.

Figure 1. Linear feedback shift register.

2.2. Binary Equivalent Model

Komo and Lam [16] proposed a method to generate primitive polynomials in GF(qn)
using primitive polynomials in GF(q) based on the relationship previously discovered by
Park and Komo [17] between the m-sequences produced in GF(qn) and GF(q), in such a
way that an m-sequence in GF(qm) can be decomposed into n m-sequences in GF(q). More
precisely:

Theorem 1 (cf. [17], th 7). Let p(x) be a primitive polynomial of degree m · n in GF[q, x]. Let
f (x) be one of the n primitive polynomials of degree m in GF[qn, x] into which p(x) factors when
viewed in GF[qn, x]. Let D = d0, d1, · · · be an m-sequence over GF(qn) generated by f (x). If

di = di,0λ0 + di,1λ1 + · · ·+ di,n−1λn − 1 (6)

where {λ0, λ1, · · · , λn−1} is a basis for GF(qn) over GF(q), then the sequence d0,j, d1,j, · · · is an
m-sequence of length qnm − 1 over GF(q).

As one can observe, the sequence d0,j, d1,j, · · · is composed by the j-th component
of each element di in the sequence D. Equivalently, the sequence d0,j, d1,j, · · · can be
considered as a decimation sequence obtained from D giving rise to the following set of
decimated sequences, as it is shown in Figure 2:

Dj = d0,j, d1,j, d2,j, · · · , (7)

Furthermore, as it is stated in [16], since the sequences Dj, for 0 ≤ j ≤ n − 1, are
generated by the same polynomial f (x), all of them are shifted versions of the same m-
sequence. Hence, taking D0 as the reference, we can define θj as the shift of Dj respect to
D0. In [16], a method to obtain a primitive polynomial f (x) ∈ GF[qn, x] in terms of a given
primitive polynomial p(x) ∈ GF[q, x] is proposed by means of the computation of the shifts
θj that satisfy the relationship between the m-sequences in the extended and base fields.
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Figure 2. Relationship between m-sequences in the extended and base fields.

3. Efficient LFSR Implementation

The relationship between the m-sequences on GF(2n) and the m-sequences on GF(2),
as described in the previous section, also allows us to establish an equivalence between
the LFSRs that generate them. This section presents a practical and efficient method to
obtain such LFSRs, i.e., to obtain the feedback polynomial p(x) and the seeds of each LFSR
< Ln, p(x) > that allow us to generate the same sequence as the LFSR < L, f (x), n > from
a given seed. Note that, according to the equivalent model, the n LFSRs in GF(2) have
the same connection polynomial p(x) but different seeds, all of them related to the seed
in GF(2n). Hence, in order to efficiently implement the LFSR < L, f (x), n > using the
equivalent model, it is necessary to solve three main questions: the computation of p(x),
the computation of the seeds, and how to speed up the performance of the binary LFSRs.

Since the connection polynomial f (x) is primitive, the minimal polynomial p(x) of the
decimated sequences Di is also primitive and unique for 0 ≤ i ≤ n− 1. Hence, p(x) can
be obtained analyzing a decimated sequence using the Massey–Berlekamp algorithm [18].
Consequently, the following Algorithm 1 is defined.

Algorithm 1: Computation of connection polynomial p(x).
input :LFSR < L, f (x), n >
output : p(x) in LFSR < Ln, p(x) >

1 Implement the LFSR < L, f (x), n >;
2 Generate 2Ln + 1 elements, at least, using any nonzero seed;
3 Obtain a decimated sequence Di for any i, 0 ≤ i ≤ n− 1;
4 Obtain the minimal polynomial p(x) of the Di generated in step 3

Once p(x) has been determined, we can construct the n LFSRs < Ln, p(x) >, but
we need their respective seeds in order to generate the same sequence as that generated
from the initial seed s = (d0, d1, . . . , dL−1) in the extended field. As it is derived from the
equivalent model, the L known elements in GF(2n) that compose the initial seed only
provide us with nL bits, while n2L bits are needed to complete the n seeds in GF(2) (see
Figure 3). Thus, the seed sj of Dj can be partially written in terms of the seed s of D as:

sj = d0,j, d1,j, . . . , dL−1,j, dL,j, . . . , dn·L−1,j (8)

where dL,j, . . . , dn·L−1,j are unknown for 0 ≤ j ≤ n− 1. However, the shifts θi that relate
the binary sequences to each other allow us to obtain the seeds completely. The following
subsections describes the computation of θj and sj.
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Figure 3. LFSR seeds in the binary equivalent model.

3.1. Computation of Shifts

All decimated sequences Dj have the same primitive minimal polynomial p(x), ob-
tained using Algorithm 1. Hence, all of them are shifted versions of the others. The shift
θj of Dj with respect to D0 allows one to obtain the state of the j-th LFSR (the one that
generates Dj) from the state of the 0-th LFSR as follows:

(d0,j, d1,j, . . . , dn·L−1,j) = (d0,0, d1,0, . . . , dn·L−1,0)Aθj , (9)

where A is the connection matrix of p(x), that is:

A =


0 0 · · · 0 cn·L
1 0 · · · 0 cn·L−1
0 1 · · · 0 cn·L−2
...

...
. . .

...
...

0 0 · · · 1 c1

 (10)

The computation of θj is not an easy task. Furthermore, the computation of Aθj is
time-consuming. Instead, we can obtain the matrix A(j) = Aθj solving the linear equation
system of Equation (9). Note that we have n matrices A(j) to compute and thus n linear
systems to solve. The linear system in Equation (9), stated using the first nL element, the
seed, has nL equations and n2L2 unknowns. Each new element of the sequence defines nL
new equations with the same unknowns. Hence, the 2Ln + 1 elements of the m-sequence
in GF(2n) generated in Algorithm 1 to obtain p(x) provide enough equations to solve
the systems. As an example, we consider a 3-stage LFSR defined in GF(24), that is, the
LFSR < 3, f (x), 4 >, where f (x) = 1 + x + (0x9)x3 is primitive over GF(24) and the
primitive polynomial x4 + x + 1 has been used to construct GF(24). From the initial seed
(1, 1, 1, 1), (0, 0, 0, 0), (0, 1, 1, 0) or, equivalently, (1 + α + α2 + α3, 0, α + α2), α being a root of
x4 + x + 1, the LFSR < 3, f (x), 4 > generates the following sequence:

001000001100111010010000 · · ·
101001011000000001010001 · · ·
101110100000001111001000 · · ·
001110000001000101100011 · · ·

(11)

where the elements of GF(24) are represented in columns with the least significant bit at
the top. The four decimated sequences are all generated by the same primitive polynomial
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p(x) = x12 + x6 + x5 + x3 + 1 and, hence, all of them are shifted versions of the same
m-sequence. Solving the system in Equation (9), we obtain the matrices A(1), A(2), A(3):

A(1) =



100000000110
010000000011
101000000001
110100000000
011010000000
001101000000
000110100110
000011010101
000001101010
000000110011
000000011001
000000001100



A(2) =



000000101010
000000010101
100000001010
110000000101
111000000010
011100000001
101110101010
010111111111
001011111111
000101010101
000010101010
000001010101



A(3) =



000111111111
000011111111
000001111111
000000111111
100000011111
010000001111
001111111000
100000000011
110000000001
111111111111
011111111111
001111111111



(12)

Since the decimated sequences have a small period of 212 − 1 = 4095, we have also
compared them to obtain the shifts θ1 = 3276, θ2 = 3549, and θ3 = 3822. In a real scenario,
θj is not going to be computed. It is important to point out that the calculation of the A(j)

matrices can be performed prior to the normal operation of the LFSR since they do not
depend on the seeds.

3.2. Computation of Seeds

Let us consider that the shift matrices A(j) = Aθj have already been precomputed. For
any given seed (d0, d1, . . . , dL−1), the seeds of the binary LFSRs can be represented as:

(d0,j, d1,j, . . . , dn·L−1,j) = (d0,0, d1,0, . . . , dn·L−1,0)A(j), (13)

where dL,j, . . . , dn·L−1,j are unknowns for every 0 ≤ j ≤ n− 1. The values dL,0, . . . , dn·L−1,0
can be obtained solving the linear system composed with the (n · L− L) equations with the
known values d0,j, d1,j, . . . , dL−1,j, for 0 ≤ j ≤ n− 1, i.e.:

di,j =
n·L−1

∑
k=0

dk,0a(j)
k,i , 0 ≤ i ≤ L− 1, 1 ≤ j ≤ n− 1, (14)

where a(j)
k,i are the components of the matrix A(j). The remaining seeds (d0,j, d1,j, . . . , dn·L−1,j),

with 1 ≤ j ≤ L − 1, are calculated using Equation (13). Considering the precomputed
matrices in Equation (12) of the previous example, the Equation (13) can be written as:

(1, 0, 1, d3,1, . . . , d11,1)) = (0, 0, 1, d3,0, . . . , d11,0)A(1)

(1, 0, 1, d3,2, . . . , d11,2)) = (0, 0, 1, d3,0, . . . , d11,0)A(2)

(0, 0, 1, d3,3, . . . , d11,3)) = (0, 0, 1, d3,0, . . . , d11,0)A(3)
(15)

Solving for (d3,0, . . . , d11,0), we obtained the complete seed for the sequence D0, that is,
(0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0). Next, using the matrices A(1), A(2) and A(3), the complete seeds
of the sequences D1, D2, and D3 are obtained. Hence, we have:

seed0 = (0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0)
seed1 = (1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)
seed2 = (1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0)
seed3 = (0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)

(16)
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3.3. Grouped Operations

Once the n binary LFSRs have been constructed, it is time to generate the sequence.
Instead of running n independent instances of the binary LFSR, which require 1-bit opera-
tions with an n-bit processor, we propose to group the n LFSRs into a unique LFSR with
connection polynomial p(x) but using n-bit cells. The result is not an LFSR over GF(2n)
but a parallel implementation of n LFSR over GF(2) using only one processor. Since the
addition and multiplication in the binary LFSRs correspond to the XOR and AND bitwise
operations, respectively, instead of applying the XOR to 1-bit values, we apply it over n-bit
values. The processor takes the same time to perform the XOR operation with 1-bit values
than with n-bit values because the word length is n, thus saving a lot of execution time.
Hence, Equation (4) can be redefined as follows: di,0

...
di,n−1

 = c1

 di−1,0
...

di−1,n−1

+ c2

 di−2,0
...

di−2,n−1

+ · · ·+ cL

 di−Ln,0
...

di−Ln,n−1

, (17)

in such a way that the n sequences stated in Equation (7) are simultaneously generated
using a unique polynomial p(x) (see Equation (5)).

From the practical implementation perspective, there is no difference at all with respect
to preforming a classical binary LFSR, which includes coding and execution, since the 1-bit
XOR operation is actually performed taking n-bit operands. Hence, the n-bit grouped
operation proposed in this paper is a way of not wasting the capacity of the operations
of the n-bit processors. As a consequence, this implementation method increases the bit
generation net rate by n because the generation of a new element of a 32-bit m-sequence
takes the same amount of time as a new element of a 1-bit m-sequence.

4. Primitiveness Test

As mentioned in Section 2.2, the m-sequences generated by an LFSR in GF(2n) can be
decomposed into n m-sequences generated by n LFSRs in GF(2), so that when the feedback
polynomial of the LFSR in the extended field is primitive, all LFSRs in GF(2) have the
same feedback polynomial, and it is also primitive. This relationship is what allows us to
propose an algorithm to check if a polynomial is primitive over GF(2n).

In general terms, to check if a polynomial f (x) over GF(2n) is primitive, we propose
to build an LFSR whose feedback polynomial is f (x) and generate 2 ·m · n + 1 elements, at
least. The sequence generated by concatenating all generated elements is decomposed into
n binary sequences by decimating by n, as it is stated in Equation (7). Next, the n sequences
are processed to obtain the minimal polynomials of the binary LFSRs that generate them
(This can be achieved using the Berlekamp–Massey algorithm). If all the n sequences are
generated by the same polynomial and it is also primitive, then f (x) is primitive over
GF(2n). Algorithm 1 can be extended including one more step (step 5) to perform the
check, resulting in Algorithm 2.

As an example, let us consider the degree 6 polynomial f (x) = 0x1 + 0x2 · x + 0x4 ·
x2 + 0x8 · x3 + 0x5 · x4 + 0x9 · x5 + x6 ∈ GF[24, x], where the primitive polynomial h(x) =
x4 + x + 1 has been used to construct GF(24). In order to check if f (x) is primitive, we
consider f (x) as the feedback polynomial of an LFSR in the GF(24) of 6 cells. For a random
seed (0x9, 0x4, 0x5, 0x9, 0x5, 0x1), we generate 2mn + 1 = 49 elements, giving rise to the
following decimated sequences:

D0 = 0010011011100000011010110001000000101011001111100
D1 = 0101100111010011110000001010111101111001011010001
D2 = 0000000011000101110101100100010010011000001000101
D3 = 1111011111000011001111010101101110100100010100001

(18)
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Algorithm 2: Primitiveness test.
input :polynomial f (x) of degree m over GF(2n)
output :primitive/non primitive

1 Implement the LFSR < m, f (x), n >;
2 Generate 2mn + 1 elements, at least, using any nonzero seed;
3 Obtain the decimated sequences Di, 0 ≤ i ≤ n− 1;
4 Obtain the minimal polynomial pi(x) of each decimated sequence Di;
5 if pi(x) = pj(x), ∀i, j and degree of pi(x) is mn then

f (x) is primitive
else

f (x) is non primitive
end

The same minimal polynomial p(x) is obtained for each Di sequence by means of the
Massey–Berlekamp algorithm [18]. The polynomial is the following:

p(x) = x24 + x23 + x22 + x21 + x20 + x19 + x15 + x14 + x9 + x8 + x7 + x6 + 1 (19)

Since p(x) is primitive over GF(2), we can conclude that f (x) is primitive over GF(24).

5. Efficiency and Security

The implementation presented in Section 3 considerably reduces the execution time
of the LFSRs defined in GF(2n). Specifically, an implementation of the LFSR used in the
SNOW 3G stream cipher has been performed and compared with the implementation
provided in the technical specification of the protocol [10]. This is an LFSR < 16, f (x), 32 >.
Hence, the equivalent model is based on 32 LFSRs < 512, p(x) >. The polynomial p(x) is
built from 1024 elements generated using the official implementation [10] following the
steps established in Algorithm 1. The result is that the 32 decimated sequences have the
same minimal polynomial p(x) of degree 512, whose coefficients are represented below in
compact hexadecimal format:

84009C624D4F75F17EDA41C663C5DFDED8A535DA1C5F70824152A7 (20)

C23EDB90D572852A765FF5F2012A64F5D3FD361B005ADBA45A1995 (21)

E64E48362706D62606828 (22)

Despite the fact that p(x) has 250 non-zero coefficients, and therefore 250 XOR op-
erations are required to generate the next element in the sequence, the execution time is
3.3 times lower than the original implementation. The computation of the matrices A(j)

is not considered, since this is performed prior to the normal operating of the LFSR. The
times have been calculated by taking the average of 10 repetitions of each generation of
1000, 10,000, 20,000, 50,000, and 100,000 elements. Both implementations have been made
in Python 3.9 language and have been executed on an Intel(R) Core(TM) i7-10510U 64-bit
processor with 16 GB of RAM. Although the SNOW 3G algorithm has been designed to
be executed on 32-bit platforms, the tests carried out on a 64-bit processor are completely
valid since the greater word length of the processor compared to the algorithm does not
affect the normal execution of our implementation. Note that the goal is to achieve an
implementation of an algorithm defined in GF(2n) using n-bit operations. The case of
working with processors of more than n bits offers the possibility of developing new faster
implementations to make the most of their capacity, but requires adapting the algorithms
to the new processor architecture. This is outside the scope of this work.

As mentioned in the Section 3, the net bit generation rate is increased by n when
compared to a single binary LFSR implementation, that is, to a binary LFSR using the same
connection polynomial. However, the improvement observed in the tests on SNOW 3G
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does not reach the net rate. This is mainly due to the number of non-zero coefficients in p(x)
that slow down the computation. Therefore, in the case of equivalent binary polynomials
p(x) with a few nonzero coefficients, the real rate will reach the net rate. In the general case,
the fewer non-zero coefficients in p(x), the greater the improvement to the generation rate.

The efficiency of the proposed implementations, shown in Section 3 affects the security
of the cryptosystems used by these LFSRs, although, in general, they are not intended
to replace those currently used by most devices, such as smartphones, but rather for use
in mobile devices without any type of restriction, such as personal computers or servers.
Using the equivalent model implies multiplying by n, the number of bits needed to generate
a new element of the m-sequence over GF(2n), that is, to generate n bits. In the case of
SNOW 3G, it goes from 512 to 16,384 bits. Therefore, the theoretical improvement of the
execution time by a factor n is associated with an increase in the same factor n in the
amount of memory needed to generate the same number of bits. As a consequence, this
implementation provides a substantial improvement for the calculation of m-sequences that,
although it could not be deployed on some devices, could always be used for cryptanalysis
tasks. Regarding the cost of our proposal, an increment in the memory cells must be taken
in mind, rising from nL to n2L bits.

Regarding the algorithm for primitiveness testing, we can conclude that it has a better
performance than O’Connor’s algorithm, one of the most used ones. The main advantage is
that the proposed algorithm has to generate 2mn+ 1 elements instead of the whole sequence
or alternatively to perform as many divisions as elements in the maximal sequence over
the extended field. The validation and comparison tests have been performed using
Mathematica software, version 10.0.0, on a 64-bits Microsoft Windows platform running
on a Intel(R) Core (TM) processor with i7-4510U CPU @ 2.00 GHz and 16 GB RAM. The
processor’s temperature and the amount of simultaneous running processes have been
taken into account for the execution time comparison. Figure 4 shows the behavior of the
algorithm with respect to O’Connor’s in GF(28) and GF(216), respectively.

Figure 4. Execution time in GF(28) and GF(216).

6. Conclusions

In this article, we have presented two real applications of the relationships between the
m-sequences in GF(2n) and GF(2). The first one is a new algorithm designed to verify the
primitiveness of polynomials with coefficients in GF(2n) that improves the execution times
of existing methods. The second one is the support of an efficient implementation of the
LFSRs defined over the extended field GF(2n), which improves the other implementations.
It enables better performance of the LFSR-based stream ciphers, often used in high speed
communication systems. The improvement is achieved by a combination of the binary
equivalent model of LFSRs in the extended field, which uses only binary operations, and
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the n-bit grouped operation that take advantage of the n-bit processors. The feasibility of
the implementation has been shown by applying it to the SNOW 3G stream cipher, whose
execution time has been reduced by a factor of 3.3 with respect to the code provided in the
technical specification of the protocol. These results can also be extended to cryptanalysis,
making use of not only the grouped operations but of the underlying binary structure
that may facilitate the parallelization of the operations. On the other hand, the proposed
implementation is software-oriented, although the binary operations also allow hardware
implementations. In this way, we provide a complete method to efficiently increase the bit
generation rate.
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