Some New Post-Quantum Simpson’s Type Inequalities for Coordinated Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Examples
5. Additional Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Bangerezaka, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar] [CrossRef] [Green Version]
- Annyby, H.M.; Mansour, S.K. q-Fractional Calculus and Equations; Springer: Helidelberg, Germany, 2012. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Ernst, T. A History of q-Calculus. A New Method; UUDM Report; Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Gauchman, H. Integral inequalities in q-calculus. J. Comput. Appl. Math. 2002, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; Latif, M.A.; Iscan, I.; Dragomir, S.S. Quantum Hermite-Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 207–223. [Google Scholar]
- Bermudo, S.; Korus, P.; Valdes, J.E.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King Saud Univ. Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
- Kalsoom, H.; Wu, J.D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Idrees, M.; Baleanu, D.; Chu, Y.M. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of functions. J. Funct. Spaces 2020, 2020, 3720798. [Google Scholar] [CrossRef]
- Ali, M.A.; Kalsoom, H.; Budak, H.; Sarikaya, M.Z.; Chu, Y.-M. On Some New Trapezoidal Type Inequalities for the Functions of Two Variables Via Quantum Calculus. Available online: https://www.researchgate.net/publication/344469986 (accessed on 30 October 2020).
- Chakrabarti, R.; Jagannathan, R. A (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E. Some integral inequalities via (p, q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 1–12. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E. (p, q)-integral inequalities. RGMIA Res. Rep. Coll. 2016, 19, 1–13. [Google Scholar]
- Hounkonnou, M.N.; Désiré, J.; Kyemba, B.R. (p, q)-calculus: Differentiation and integration. SUT J. Math. 2013, 49, 145–167. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Chu, Y.M.; Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. New post quantum analogues of Ostrowski-type inequalities using new definitions of left-right (p, q)-derivatives and definite integrals. Adv. Differ. Equ. 2020, 2020, 634. [Google Scholar] [CrossRef]
- Kalsoom, H.; Rashid, S.; Tdrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.M. Post quantum inequalities of Hermite-Hadamard-type associated with co-ordinated higher-order generalized strongly pre-index and quasi-pre-index mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Budak, H.; Kalsoom, H.; Chu, Y.M. Post-quantum Hermite-Hadamard inequalities involving newly defined (p, q)-integral. Authorea 2020. [Google Scholar] [CrossRef]
- Wannalookkhee, F.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Hermite-Hadamard type inequalities for coordinated convex functions via (p, q)-calculus. Mathematics 2021, 9, 698. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2002, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 4, 12. [Google Scholar]
- Zarikaya, M.Z.; Set, E.; Ozdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 2. [Google Scholar]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Methods Appl. Sci. 2021, 44, 378–390. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildirim, H. Some new Simpson’s type inequalities for coordinated convex functions in quantum calculus. Math. Methods Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Dragomir, S.S. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Wannalookkhee, F.; Nonlaopon, J.; Ntouyas, S.K.; Zarikaya, M.Z.; Budak, H. Ostrowski-type inequalities for coordinated convex functions via (p, q)-calculus. Mathematics, 2022; submitted. [Google Scholar]
- Ozdemir, M.E.; Akdemir, A.O.; Kavurmaci, H.; Avci, M. On the Simpson’s inequality for co-ordinated convex functions. arXiv 2010, arXiv:1101.0075. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wannalookkhee, F.; Nonlaopon, K.; Ntouyas, S.K.; Sarikaya, M.Z.; Budak, H. Some New Post-Quantum Simpson’s Type Inequalities for Coordinated Convex Functions. Mathematics 2022, 10, 872. https://doi.org/10.3390/math10060872
Wannalookkhee F, Nonlaopon K, Ntouyas SK, Sarikaya MZ, Budak H. Some New Post-Quantum Simpson’s Type Inequalities for Coordinated Convex Functions. Mathematics. 2022; 10(6):872. https://doi.org/10.3390/math10060872
Chicago/Turabian StyleWannalookkhee, Fongchan, Kamsing Nonlaopon, Sotiris K. Ntouyas, Mehmet Zeki Sarikaya, and Hüseyin Budak. 2022. "Some New Post-Quantum Simpson’s Type Inequalities for Coordinated Convex Functions" Mathematics 10, no. 6: 872. https://doi.org/10.3390/math10060872
APA StyleWannalookkhee, F., Nonlaopon, K., Ntouyas, S. K., Sarikaya, M. Z., & Budak, H. (2022). Some New Post-Quantum Simpson’s Type Inequalities for Coordinated Convex Functions. Mathematics, 10(6), 872. https://doi.org/10.3390/math10060872