Riemann–Hilbert Problems and Soliton Solutions of Type ( , ) Reduced Nonlocal Integrable mKdV Hierarchies
Abstract
:1. Introduction
2. Reduced Nonlocal Matrix Integrable mKdV Hierarchies
2.1. The Matrix AKNS Integrable Hierarchies Revisited
2.2. Reduced Nonlocal Matrix Integrable mKdV Hierarchies
3. Riemann–Hilbert Problems
3.1. Properties of Eigenvalues and Eigenfunctions
3.2. Riemann–Hilbert Problems
3.3. Evolution of the Scattering Data
3.4. Gelfand–Levitan–Marchenko Type Equations
3.5. Recovering the Potential Matrix
4. Soliton Solutions
4.1. General Formulation
4.2. Realization
5. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Calogero, F.; Degasperis, A. Solitons and Spectral Transform I; North-Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Ma, W.X. N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. Math. Comput. Simul. 2021, 190, 270–279. [Google Scholar] [CrossRef]
- Ma, W.X.; Yong, X.L.; Lü, X. Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations. Wave Motion 2021, 103, 102719. [Google Scholar] [CrossRef]
- Ma, W.X. N-soliton solutions and the Hirota conditions in (1+1)-dimensions. Int. J. Nonlinear Sci. Numer. Simul. 2022, 23, 123–133. [Google Scholar] [CrossRef]
- Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Consultants Bureau: New York, NY, USA, 1984. [Google Scholar]
- Ma, W.X. The algebraic structure of zero curvature representations and application to coupled KdV systems. J. Phys. A Math. Gen. 1993, 26, 2573–2582. [Google Scholar] [CrossRef]
- Ma, W.X. Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math. Meth. Appl. Sci. 2019, 42, 1099–1113. [Google Scholar] [CrossRef]
- Ma, W.X.; Huang, Y.H.; Wang, F.D. Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies. Stud. Appl. Math. 2020, 145, 563–585. [Google Scholar] [CrossRef]
- Ma, W.X. Inverse scattering and soliton solutions for nonlocal reverse-spacetime nonlinear Schrödinger equations. Proc. Am. Math. Soc. 2021, 149, 251–263. [Google Scholar] [CrossRef]
- Ma, W.X. Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems. Partial. Differ. Equ. Appl. Math. 2021, 4, 100190. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable nonlocal nonlinear Schrödinger equations associated with so(3,). Proc. Am. Math. Soc. Ser. B 2022, 9, 1–11. [Google Scholar] [CrossRef]
- Ma, W.X. Riemann-Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies. Acta Math. Sci. 2022, 42B, 127–140. [Google Scholar] [CrossRef]
- Ma, W.X. Riemann-Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies. Physica D 2022, 430, 133078. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Manakov, S.V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 1974, 38, 248–253. [Google Scholar]
- Tu, G.Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A Math. Gen. 1989, 22, 2375–2392. [Google Scholar]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear equations. Stud. Appl. Math. 2016, 139, 7–59. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.L.; Zhu, Z.N. On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 699–708. [Google Scholar] [CrossRef]
- Gürses, M.; Pekcan, A. Nonlocal modified KdV equations and their soliton solutions by Hirota method. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 427–448. [Google Scholar] [CrossRef]
- Hildebrand, F.B. Methods of Applied Mathematics; Dover: Mineola, New York, NY, USA, 1992. [Google Scholar]
- Ablowitz, M.J.; Prinari, B.; Trubatch, A.D. Discrete and Continuous Nonlinear Schrödinger Systems; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Gakhov, F.D. Boundary Value Problems; Elsevier Science: London, UK, 2014. [Google Scholar]
- Kawata, T. Riemann spectral method for the nonlinear evolution equation. In Advances in Nonlinear Waves; Pitman Advanced Pub.: Boston, MA, USA, 1984; Volume 1, pp. 210–225. [Google Scholar]
- Yang, J. Nonlinear Waves in Integrable and Nonintegrable Systems; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Wang, D.S.; Zhang, D.J.; Yang, J. Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 2010, 51, 023510. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.G.; Wu, J.P. Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation. Wave Motion 2016, 60, 62–72. [Google Scholar] [CrossRef]
- Fokas, A.S.; Lenells, J. The unified method: I. Nonlinearizable problems on the half-line. J. Phys. A Math. Theor. 2012, 45, 195201. [Google Scholar] [CrossRef] [Green Version]
- Lenells, J.; Fokas, A.S. The unified method: III. Nonlinearizable problems on the interval. J. Phys. A Math. Theor. 2012, 45, 195203. [Google Scholar] [CrossRef]
- Freeman, N.C.; Nimmo, J.J.C. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The Wronskian technique. Phys. Lett. A 1983, 95, 1–3. [Google Scholar] [CrossRef]
- Ma, W.X.; You, Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 2005, 357, 1753–1778. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X. Generalized bilinear differential equations. Stud. Nonlinear Sci. 2011, 2, 140–144. [Google Scholar]
- Batwa, S.; Ma, W.X. A study of lump-type and interaction solutions to a (3+1)-dimensional Jimbo-Miwa-like equation. Comput. Math. Appl. 2018, 76, 1576–1582. [Google Scholar] [CrossRef]
- Lambert, F.; Loris, I.; Springael, J.; Willox, R. On a direct bilinearization method: Kaup’s higher-order water wave equation as a modified nonlocal Boussinesq equation. J. Phys. A Math. Gen. 1994, 27, 5325–5334. [Google Scholar] [CrossRef]
- Fan, E.G. The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials. Phys. Lett. A 2011, 375, 493–497. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhang, Y.J. Darboux transformations of integrable couplings and applications. Rev. Math. Phys. 2018, 30, 1850003. [Google Scholar] [CrossRef]
- Matveev, V.B. Generalized Wronskian formula for solutions of the KdV equations: First applications. Phys. Lett. A 1992, 166, 205–208. [Google Scholar] [CrossRef]
- Ma, W.X. Complexiton solutions to the Korteweg-de Vries equation. Phys. Lett. A 2002, 301, 35–44. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhou, Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 2018, 264, 2633–2659. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X.; Bai, Y.S.; Adjiri, A. Nonlinearity-managed lump waves in a spatial symmetric HSI model. Eur. Phys. J. Plus 2021, 136, 240. [Google Scholar] [CrossRef]
- Ma, W.X. Linear superposition of Wronskian rational solutions to the KdV equation. Commun. Theor. Phys. 2021, 73, 065001. [Google Scholar] [CrossRef]
- Ma, W.X. A polynomial conjecture connected with rogue waves in the KdV equation. Partial Differ. Equ. Appl. Math. 2021, 3, 100023. [Google Scholar] [CrossRef]
- Rybalko, Y.; Shepelsky, D. Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation. J. Math. Phys. 2019, 60, 031504. [Google Scholar] [CrossRef] [Green Version]
- Belokolos, E.D.; Bobenko, A.I.; Enol’skii, V.Z.; Its, A.R.; Matveev, V.B. Algebro-Geometric Approach to Nonlinear Integrable Equations; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.-X.
Riemann–Hilbert Problems and Soliton Solutions of Type (
Ma W-X.
Riemann–Hilbert Problems and Soliton Solutions of Type (
Ma, Wen-Xiu.
2022. "Riemann–Hilbert Problems and Soliton Solutions of Type (