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Abstract: Reduced nonlocal matrix integrable modified Korteweg–de Vries (mKdV) hierarchies are
presented via taking two transpose-type group reductions in the matrix Ablowitz–Kaup–Newell–
Segur (AKNS) spectral problems. One reduction is local, which replaces the spectral parameter λ

with its complex conjugate λ∗, and the other one is nonlocal, which replaces the spectral parameter λ

with its negative complex conjugate −λ∗. Riemann–Hilbert problems and thus inverse scattering
transforms are formulated from the reduced matrix spectral problems. In view of the specific
distribution of eigenvalues and adjoint eigenvalues, soliton solutions are constructed from the
reflectionless Riemann–Hilbert problems.
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1. Introduction

Starting from matrix spectral problems, one can generate integrable hierarchies of
equations, based on the corresponding zero curvature equations. Among typical examples
are the nonlinear Schrödinger (NLS) hierarchy and the modified Korteweg–de Vries (mKdV)
hierarchy. Specific group reductions on spectral matrices can yield reduced integrable
hierarchies. In soliton theory, there are a few effective methods to solve integrable equations,
which include the inverse scattering transforms [1,2], the Darboux transformation [3], and
the Hirota bilinear method [4]. A kind of multiple wave solution, called soliton solutions,
can be presented explicitly by the Hirota bilinear method [5–7]. Riemann–Hilbert problems,
formulated from the associated given matrix spectral problems, also provide a powerful
technique that allows us to solve integrable equations, particularly to present soliton
solutions [8].

Let us consider the (1+1)-dimensional case. Let x and t be two independent variables,
λ a spectral parameter, and u = u(x, t) a column vector of dependent variables. Take two
square matrices, U = U(u, λ) and V = V(u, λ), from a loop algebra to form a Lax pair
consisting of spatial and temporal matrix spectral problems:

−iφx = Uφ = U(u, λ)φ, − iφt = Vφ = V(u, λ)φ, (1)

where φ is a square matrix eigenfunction and i is the unit imaginary number. We assume
that the compatibility condition of the above two matrix spectral problems, namely the
zero curvature equation
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Ut −Vx + i[U, V] = 0, (2)

where [·, ·] denotes the matrix commutator, gives us an integrable equation:

ut = K(u). (3)

For such integrable equations, Lie algebraic structures behind matrix spectral problems
have been explored to generate their infinitely many symmetries [9]. The adjoint Lax pair
of the matrix spectral problems in (1) is defined by:

iφ̃x = φ̃U = φ̃U(u, λ), iφ̃t = φ̃V = φ̃V(u, λ), (4)

where φ̃ is a square matrix eigenfunction, too. Their compatibility condition leads to the
same zero curvature equation as (2), and so, it does not bring any additional equations.
Both the Lax pair and the adjoint Lax pair lay the basis for the subsequent analyses in the
formulation of Riemann–Hilbert problems and soliton solutions.

We state the standard procedure for establishing Riemann–Hilbert problems as follows.
It begins with a pair of matrix spectral problems in (1) with:

U(u, λ) = A(λ) + P(u, λ), V(u, λ) = B(λ) + Q(u, λ), (5)

where A, B are commuting constant square matrices, and P, Q are trace-less square matrices
satisfying degλ(P) < degλ(A) and degλ(Q) < degλ(B). In order to formulate a Riemann–
Hilbert problem for the corresponding integrable equation Equation (3), we adopt an
equivalent Lax pair of matrix spectral problems:

ψx = i[A(λ), ψ] + P̌(u, λ)ψ, ψt = i[B(λ), ψ] + Q̌(u, λ)ψ, (6)

where P̌ = iP, Q̌ = iQ, and an equivalent adjoint Lax pair consisting of the following
matrix spectral problems:

iψ̃x = [ψ̃, A(λ)] + ψ̃P(u, λ), iψ̃t = [ψ̃, B(λ)] + ψ̃Q(u, λ), (7)

where ψ and ψ̃ also denote square matrix eigenfunctions. The equivalence between
the matrix spectral problems in (1) and the matrix spectral problems in (6) is a conse-
quence of the commutativity of A and B. From tr P = tr Q = 0, we obtain the properties
(det ψ)x = (det ψ)t = 0. Obviously, there are the relations φ̃ = φ−1 and ψ̃ = ψ−1. There
also exists a direct connection between the matrix spectral problems in (1) and the matrix
spectral problems in (6):

φ = ψEg, Eg = eiA(λ)x+iB(λ)t.

It is crucial to note that for the pair and the adjoint pair of matrix spectral problems
in (6) and (7), we can require the asymptotic conditions:

ψ±, ψ̃± → I, when x or t→ ±∞, (8)

where I stands for the identity matrix. Then, based on those matrix eigenfunctions ψ± and
ψ̃±, we can pick the entries to form two generalized matrix Jost solutions T±(x, t, λ), which
are analytic in the upper and lower half-planes, C+ and C−, and continuous in the closed
upper and lower half-planes, C̄+ and C̄−, respectively, and present a Riemann–Hilbert
problem with a jump on the real line:

G+(x, t, λ) = G−(x, t, λ)G0(x, t, λ), λ ∈ R. (9)

The two unimodular generalized matrix Jost solutions, G+ and G−, and the jump matrix,
G0, are all generated from the generalized Jost solutions T+ and T−, and G+ and G− have
the same analyticity properties as T+ and T−, respectively. Moreover, the jump matrix,
G0, carries all essential scattering data, generated from the scattering matrix Sg(λ) of the
associated matrix spectral problems, which is defined via:
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ψ−Eg = ψ+EgSg(λ).

Exact solutions to the resulting Riemann–Hilbert problem (9) present the required general-
ized matrix Jost solutions to recover the potential of the matrix spectral problems, and thus,
solutions to the corresponding integrable Equation (3). Such solutions, G+ and G−, can be
determined through an application of the Sokhotski–Plemelj formula to the difference of
G+ and G−. Observing the asymptotic behaviors of the generalized matrix Jost solutions
G± at infinity of λ leads to a recovery of the potential. The whole procedure also gener-
ates the corresponding inverse scattering transforms. Soliton solutions correspond to the
reflectionless case, and they are constructed by solving the reflectionless Riemann–Hilbert
problems or computing the corresponding reflectionless inverse scattering transforms.

It is also known that we can generate reduced integrable equations under group reduc-
tions of matrix spectral problems, both local (see, e.g., [10]) and nonlocal (see, e.g., [11–15]).
One class of local group reductions is defined by:

U†(x, t, λ∗) = (U(x, t, λ∗))† = ΣU(x, t, λ)Σ−1, (10)

and one class of nonlocal group reductions reads:

U†(−x,−t,−λ∗) = (U(−x,−t,−λ∗))† = −∆U(x, t, λ)∆−1, (11)

where † stands for the Hermitian transpose, Σ, ∆ are two constant invertible Hermitian
matrices, and λ∗ is the complex conjugate of λ. The first class of reductions in (10) works
for both the NLS equations and the mKdV equations, but the second class of reductions
in (11) works only for the mKdV equations. In those reductions, the crucial point is to
replace the spectral parameter λ with its complex conjugate, λ∗, and its negative complex
conjugate −λ∗, respectively. Each of them can yield reduced integrable equations from
zero curvature equations.

In this paper, we would like to consider the above two classes of group reductions (10)
and (11) for the matrix Ablowitz–Kaup–Newell–Segur (AKNS) spectral problems simulta-
neously, to generate reduced nonlocal matrix integrable mKdV hierarchies and to establish
their Riemann–Hilbert problems and inverse scattering transforms. The starting point is a
kind of arbitrary-order matrix AKNS spectral problems. The corresponding reflectionless
Riemann–Hilbert problems are used to construct soliton solutions, by taking advantage of
the specific distribution of eigenvalues and adjoint eigenvalues. The last section gives the
conclusions and concluding remarks.

2. Reduced Nonlocal Matrix Integrable mKdV Hierarchies
2.1. The Matrix AKNS Integrable Hierarchies Revisited

To present reduced nonlocal matrix integrable mKdV hierarchies, let us recall the
construction of the integrable hierarchies of matrix AKNS equations (see, e.g., [16]).

Assume that m, n ≥ 1 are two given integers, and p, q are two matrix potentials:

p = p(x, t) = (pjk)m×n, q = q(x, t) = (qkj)n×m, (12)

λ is a spectral parameter, Is denotes the identity matrix of size s, s ≥ 0, and α1, α2 and
β1, β2 are two arbitrary pairs of distinct real constants. Each of the matrix AKNS integrable
hierarchies is constructed from the matrix AKNS spectral problems with matrix potentials:

− iφx = Uφ = U(u, λ)φ, −iφt = V[r]φ = V[r](u, λ)φ, r ≥ 0, (13)

where the Lax pair of spectral matrices are given by:

U = λΛ + P, V[r] = λrΩ + Q[r]. (14)

In this pair of spectral matrices, Λ and Ω are two constant square matrices:

Λ = diag(α1 Im, α2 In), Ω = diag(β1 Im, β2 In), (15)



Mathematics 2022, 10, 870 4 of 21

and the other two involved square matrices are defined by:

P = P(u) =

[
0 p

q 0

]
, (16)

which is called the potential matrix, and:

Q[r] = Q[r](u, λ) =
r−1

∑
s=0

λs

[
a[r−s] b[r−s]

c[r−s] d[r−s]

]
, (17)

where a[s], b[s], c[s], and d[s] will be defined recursively later.
Evidently, when m = 1, the matrix spectral problems in (13) are reduced to the

multicomponent case, and if there is only a pair of nonzero potentials—for example, pjk
and qkj—the matrix spectral problems in (13) are reduced to the standard AKNS case [17].

As normal, to generate an associated matrix AKNS integrable hierarchy, let us first
solve the stationary zero curvature equation:

Wx = i[U, W], (18)

for a given spectral matrix U defined as in (14). We look for a solution W of the form:

W =

[
a b

c d

]
, (19)

where a, b, c, d are m×m, m× n, n×m, and n× n matrices, respectively. Obviously, the
stationary zero curvature Equation (18) precisely presents:

ax = i(pc− bq),

bx = i(αλb + pd− ap),

cx = i(−αλc + qa− dq),

dx = i(qb− cp),

(20)

where α = α1 − α2. Let us take W as a formal Laurent series:

W =

[
a b

c d

]
=

∞

∑
s=0

Wsλ−s, Ws = Ws(p, q) =

[
a[s] b[s]

c[s] d[s]

]
, s ≥ 0, (21)

and then, the system (20) leads equivalently to the recursion relations:

b[0] = 0, c[0] = 0, a[0]x = 0, d[0]x = 0, (22)

b[s+1] =
1
α
(−ib[s]x − pd[s] + a[s]p), s ≥ 0, (23)

c[s+1] =
1
α
(ic[s]x + qa[s] − d[s]q), s ≥ 0, (24)

and
a[s]x = i(pc[s] − b[s]q), d[s]x = i(qb[s] − c[s]p), s ≥ 1. (25)

Now, let us take the initial values for a[0] and d[0]:

a[0] = β1 Im, d[0] = β2 In, (26)

and select zero constants of integration in (25), which means that we impose:

Ws|p,q=0 = 0, s ≥ 1. (27)

In this way, with a[0] and d[0] given by (26), we see that:

V[r] = (λW)+ :=
r

∑
s=0

λr−sWs, r ≥ 0; (28)
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and can uniquely determine all matrices Ws, s ≥ 1, defined recursively. For instance, one
can work out that:

b[1] =
β

α
p, c[1] =

β

α
q, a[1] = 0, d[1] = 0; (29)

b[2] = − β

α2 ipx, c[2] =
β

α2 iqx, a[2] = − β

α2 pq, d[2] =
β

α2 qp; (30)
b[3] = − β

α3 (pxx + 2pqp), c[3] = − β

α3 (qxx + 2qpq),

a[3] = − β

α3 i(pqx − pxq), d[3] = − β

α3 i(qpx − qx p);
(31)

and 

b[4] =
β

α4 i(pxxx + 3pqpx + 3pxqp),

c[4] = − β

α4 i(qxxx + 3qx pq + 3qpqx),

a[4] =
β

α4 [3(pq)2 + pqxx − pxqx + pxxq],

d[4] = − β

α4 [3(qp)2 + qpxx − qx px + qxx p];

(32)

where β = β1 − β2. Particularly, we can obtain:

Q[1] =
β

α

[
0 p

q 0

]
=

β

α
P, (33)

Q[2] =
β

α
λ

[
0 p

q 0

]
− β

α2

[
pq ipx

−iqx −qp

]
=

β

α
λP− β

α2 Im,n(P2 + iPx), (34)

and:

Q[3] =
β

α
λ2

 0 p

q 0

− β

α2 λ

 pq ipx

−iqx −qp

− β

α3

 i(pqx − pxq)) pxx + 2pqp

qxx + 2qpq i(qpx − qx p)


=

β

α
λ2P− β

α2 λIm,n(P2 + iPx)−
β

α3 (i[P, Px ] + Pxx + 2P3), (35)

in which Im,n = diag(Im,−In). Based on (25), we can easily derive, from (23) and (24), a
recursion relation for determining b[s] and c[s]:[

c[s+1]

b[s+1]

]
= Ψ

[
c[s]

b[s]

]
, s ≥ 1, (36)

where the matrix operator Ψ reads:

Ψ =
i
α

[
(∂x + q∂−1

x (p ·) + [∂−1
x (· p)]q −q∂−1

x (· q)− [∂−1
x (q ·)]q

p∂−1
x (· p) + [∂−1

x (p ·)]p −∂x − p∂−1
x (q ·)− [∂−1

x (· q)]p

]
. (37)

Finally, we see that the compatibility conditions of the two matrix spectral problems
in (13), i.e., the zero curvature equations

Ut −V[r]
x + i[U, V[r]] = 0, r ≥ 0, (38)

engender one so-called matrix AKNS integrable hierarchy:

pt = iαb[r+1], qt = −iαc[r+1], r ≥ 0. (39)
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The first two nonlinear integrable equations in this hierarchy give us the AKNS matrix NLS
equations:

pt = −
β

α2 i(pxx + 2pqp), qt =
β

α2 i(qxx + 2qpq), (40)

and the AKNS matrix mKdV equations:

pt = −
β

α3 (pxxx + 3pqpx + 3pxqp), qt = −
β

α3 (qxxx + 3qx pq + 3qpqx), (41)

where the two matrix potentials, p and q, are defined by (12).
When m = 1 and n = 2, the matrix NLS Equation (40) can be reduced to the Manakov

system [18], under a group reduction of type (10).
By a theory of Lax operator algebras [9], we can directly show that (39) defines a

hierarchy of commuting flows, which implies that each equation in the hierarchy (39)
possesses infinitely many symmetries. Moreover, an application of the trace identity [19]
can show that every nonlinear equation in (39) possesses a bi-Hamiltonian structure and
thus infinitely many conservation laws, which commute under both Poisson brackets
associated with the bi-Hamiltonian structure.

2.2. Reduced Nonlocal Matrix Integrable mKdV Hierarchies

Let us now construct a kind of reduced nonlocal integrable mKdV hierarchies by
two groups reductions of the matrix AKNS spectral problems in (39), of which one is local
and the other is nonlocal.

We take two pairs of constant invertible Hermitian matrices Σ1, Σ2 and ∆1, ∆2, and
consider two classes of group reductions for the spectral matrix U defined as in (14):

U†(x, t, λ∗) = (U(x, t, λ∗))† = ΣU(x, t, λ)Σ−1, (42)

and:

U†(−x,−t,−λ∗) = (U(−x,−t,−λ∗))† = −∆U(x, t, λ)∆−1, (43)

where Σ, ∆ are two constant invertible Hermitian matrices given by:

Σ =

[
Σ1 0
0 Σ2

]
, Σ†

j = Σj, j = 1, 2, (44)

and:

∆ =

[
∆1 0
0 ∆2

]
, ∆†

j = ∆j, j = 1, 2. (45)

These two classes of reductions precisely require the local potential reduction:

P†(x, t) = ΣP(x, t)Σ−1, (46)

and the nonlocal potential reduction:

P†(−x,−t) = −∆P(x, t)∆−1, (47)

which allow us to make the local and nonlocal reductions for the matrix potentials:

q(x, t) = Σ−1
2 p†(x, t)Σ1, (48)

and:

q(x, t) = −∆−1
2 p†(−x,−t)∆1, (49)

respectively. It then follows that both classes of reductions for the spectral matrix U need
an additional constraint for the matrix potential p:

Σ−1
2 p†(x, t)Σ1 = −∆−1

2 p†(−x,−t)∆1. (50)

Further, noting that the group reductions in (42) and (43) ensure that
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{
W†(x, t, λ∗) = (W(x, t, λ∗))† = ΣW(x, t, λ)Σ−1,

W†(−x,−t,−λ∗) = (W(−x,−t,−λ∗))† = ∆W(x, t, λ)∆−1,
(51)

we can see that V[2s+1]†(x, t, λ∗) = (V[2s+1](x, t, λ∗))† = ΣV[2s+1](x, t, λ)Σ−1,

V[2s+1]†(−x,−t,−λ∗) = (V[2s+1](−x,−t,−λ∗))† = −∆V[2s+1](x, t, λ)∆−1,
(52)

and Q[2s+1]†(x, t, λ∗) = (Q[2s+1](x, t, λ∗))† = ΣQ[2s+1](x, t, λ)Σ−1,

Q[2s+1]T(−x,−t,−λ∗) = (Q[2s+1](−x,−t,−λ∗))† = −∆Q[2s+1](x, t, λ)∆−1,
(53)

where s ≥ 0, V[2s+1] is defined as in (14) and Q[2s+1] is defined by (17). Therefore, under
the group reductions (48) and (49), the integrable matrix AKNS equations in (39) with
r = 2s + 1, s ≥ 0, are reduced to a hierarchy of reduced nonlocal matrix integrable mKdV
type equations:

pt = iαb[2s+2]|q=Σ−1
2 p†Σ1=−∆−1

2 p†(−x,−t)∆1
, s ≥ 0, (54)

where p = (pjl)m×n satisfies (50), and Σ1, ∆1 and Σ2, ∆2 are two pairs of arbitrarily given in-
vertible Hermitian matrices of sizes m and n, respectively. All equations in the hierarchy (54)
possess Lax pairs of the reduced spatial and temporal matrix spectral problems in (13) with
2s + 1, s ≥ 0, and infinitely many symmetries and conservation laws reduced from those
for the integrable matrix AKNS equations in (39) with 2s + 1, s ≥ 0.

Let us fix s = 1, i.e., r = 3. Then, the reduced nonlocal matrix integrable mKdV type
equations in (54) present a class of reduced nonlocal matrix integrable mKdV equations:

pt = −
β

α3 (pxxx + 3pΣ−1
2 p†Σ1 px + 3pxΣ−1

2 pTΣ1 p)

= − β

α3 (pxxx − 3p∆−1
2 p†(−x,−t)∆1 px − 3px∆−1

2 p†(−x,−t)∆1 p), (55)

where p is an m× n matrix potential satisfying (50).
In what follows, we would like to present a few examples of these novel nonlocal

matrix integrable mKdV equations, by taking different values for m, n and different choices
for Σ, ∆. Let us first consider m = 1 and n = 2, and take

Σ1 = 1, Σ−1
2 =

[
σ 0

0 σ

]
, ∆1 = 1, ∆−1

2 =

[
0 δ

δ 0

]
, (56)

where σ and δ are real constants and satisfy σ2 = δ2 = 1. Then, the potential con-
straint (50) tells:

p2 = −σδp1(−x,−t), (57)

where p = (p1, p2), and so the corresponding potential matrix P reads:

P =


0 p1 −σδp1(−x,−t)

σp∗1 0 0

−δp∗1(−x,−t) 0 0

. (58)

Then, the corresponding novel nonlocal integrable mKdV equation becomes:

p1,t = −
β

α3 [p1,xxx + 6σ|p1|2 p1,x + 3σp∗1(−x,−t)(p1 p1(−x,−t))x], (59)
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where σ = ±1, |z| is the absolute value of z and z∗ is the complex conjugate of z. This
nonlocal integrable mKdV equation, which has two nonlinear terms and two reverse
spacetime factors, is very different from the ones studied in [20–22], which have only one
nonlinear term and one reverse spacetime factor. The equation needs more restrictions
while formulating its soliton solutions, which will be seen later.

Let us second consider m = 1 and n = 4, and take:

Σ1 = 1, Σ−1
2 =


σ1 0 0 0

0 σ1 0 0

0 0 σ2 0

0 0 0 σ2

, ∆1 = 1, ∆−1
2 =


0 δ1 0 0

δ1 0 0 0

0 0 0 δ2

0 0 δ2 0

, (60)

where σj and δj are real constants and satisfy σ2
j = δ2

j = 1, j = 1, 2. Then, the potential
constraint (50) generates:

p2 = −σ1δ1 p1(−x,−t), p4 = −σ2δ2 p3(−x,−t), (61)

where p = (p1, p2, p3, p4), and so the corresponding potential matrix P reads:

P =



0 p1 −σ1δ1 p1(−x,−t) p3 −σ2δ2 p3(−x,−t)

σ1 p∗1 0 0 0 0

−δ1 p∗1(−x,−t) 0 0 0 0

σ2 p∗3 0 0 0 0

−δ2 p∗3(−x,−t) 0 0 0 0


. (62)

This enables us to obtain a class of two-component reduced nonlocal integrable mKdV
equations:

p1,t = −
β

α3 [p1,xxx + 6σ1|p1|2 p1,x + 3σ1 p∗1(−x,−t)(p1 p1(−x,−t))x

+3σ2 p∗3(p1 p3)x + 3σ2 p∗3(−x,−t)(p1 p3(−x,−t))x],

p3,t = −
β

α3 [p3,xxx + 3σ1 p∗1(p1 p3)x + 3σ1 p∗1(−x,−t)(p1(−x,−t)p3)x

+6σ2|p3|2 p3,x + 3σ2 p∗3(−x,−t)(p3 p3(−x,−t))x],

(63)

where σj are real constants and satisfy σ2
j = 1, j = 1, 2. Similarly, we can also generate

multi-component reduced nonlocal integrable mKdV equations.

3. Riemann–Hilbert Problems
3.1. Properties of Eigenvalues and Eigenfunctions

Note that the reduction in (42) (or (43)) grarantees that λ is an eigenvalue of the matrix
spectral problems in (13) if and only if λ̂ = λ∗ (or λ̂ = −λ∗) is an adjoint eigenvalue, i.e., it
satisfies the adjoint matrix spectral problems:

iφ̃x = φ̃U = φ̃U(u, λ̂), iφ̃t = φ̃V[r] = φ̃V[r](u, λ̂), (64)

where r = 2s + 1, s ≥ 0. Consequently, we can assume to have eigenvalues λ : µ, −µ, iν,
and adjoint eigenvalues λ̂ : µ∗, −µ∗, −iν, where µ 6∈ iR and ν ∈ R.

Suppose that all the potentials are in L2(R2). For the matrix spectral problems in (13)
with r = 2s + 1, s ≥ 0, we can impose the asymptotic behavior: φ ∼ eiλΛx+iλ2s+1Ωt, when
x, t→ ±∞. Consequently, if we take the transformation

φ = ψEg, Eg = eiλΛx+iλ2s+1Ωt, (65)
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then we can achieve the canonical asymptotic conditions ψ→ Im+n, when x or t goes to ∞
or −∞. The equivalent pair of matrix spectral problems to (13) with r = 2s + 1, s ≥ 0, is
defined by:

ψx = iλ[Λ, ψ] + P̌ψ, P̌ = iP, (66)

and

ψt = iλ2s+1[Ω, ψ] + Q̌[2s+1]ψ, Q̌[2s+1] = iQ[2s+1]. (67)

Upon applying a generalized Liouville’s formula, one can obtain:

det ψ = 1, (68)

because (det ψ)x = 0 due to tr P̌ = tr Q̌[2s+1] = 0.
Recall that the adjoint equation of the x-part of (13) and the adjoint equation of (66) are:

iφ̃x = φ̃U, (69)

and

iψ̃x = λ[ψ̃, Λ] + ψ̃P, (70)

respectively. Obviously, the pair of adjoint matrix spectral problems or equivalent adjoint
matrix spectral problems does not create any additional condition.

Let ψ(λ) be a matrix eigenfunction of the spatial spectral problem (66) associated
with an eigenvalue λ. Then, Σψ−1(λ) and ∆ψ−1(λ) are two matrix adjoint eigenfunctions
associated with the same eigenvalue λ. With the group reduction in (43), one can have:

i[ψ†(−x,−t,−λ∗)∆]x = −i[(ψx)†(−x,−t,−λ∗)∆]

= −i{iλ[ψ†(−x,−t,−λ∗), Λ]− iψ†(−x,−t,−λ∗)P†(−x,−t)}∆

= λ[ψ†(−x,−t,−λ∗), Λ]∆− ψ†(−x,−t,−λ∗)∆[∆−1P†(−x,−t)∆]

= λ[ψ†(−x,−t,−λ∗)∆, Λ] + ψ†(−x,−t,−λ∗)∆P.

This implies that the matrix

ψ̃(λ) := ψ†(−x,−t,−λ∗)∆, (71)

gives rise to another matrix adjoint eigenfunction associated with the same original eigen-
value λ. Equivalently, ψ†(−x,−t,−λ∗)∆ solves the adjoint spectral problem (70). Thus,
upon observing the asymptotic conditions of the matrix eigenfunction ψ, it follows from
the uniqueness of solutions that ψ(λ) satisfies:

ψ†(−x,−t,−λ∗) = ∆ψ−1(λ)∆−1, (72)

when ψ→ Im+n, x or t→ ∞ or −∞.
Similarly, based on the group reduction in (42), we can find that:

ψ̃(λ) = ψ†(λ∗)Σ (73)

presents a new matrix adjoint eigenfunction associated with λ and satisfies:

ψ†(λ∗) = Σψ−1(λ)Σ−1. (74)

3.2. Riemann–Hilbert Problems

We begin to present a class of associated Riemann–Hilbert problems with the space
variable x. To formulate the problems explicitly, we make the following assumptions:

α = α1 − α2 < 0, β = β1 − β2 < 0. (75)
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While considering the scattering problem, let us first take the two matrix eigenfunc-
tions ψ±(x, λ) of (66) with the canonical asymptotic conditions:

ψ± → Im+n, when x → ±∞, (76)

respectively. Based on (68), we then see that det ψ± = 1 for all values of x ∈ R. Since

φ± = ψ±E, E = eiλΛx, (77)

are both matrix eigenfunctions of the x-part of the matrix spectral problems (13), they have
to be linearly dependent, and therefore, we have:

ψ−E = ψ+ES(λ), λ ∈ R. (78)

Here, S(λ) is the so-called scattering matrix, and it is clear that det S(λ) = 1, due to
det ψ± = 1.

As usual, by the method of variation in parameters, one can transform the x-part of
the matrix spectral problems (13) into the following Volterra integral equations for ψ± [8]:

ψ±(λ, x) = Im+n −
∫ ±∞

x
eiλΛ(x−y)P̌(y)ψ±(λ, y)eiλΛ(y−x) dy, (79)

where the canonical asymptotic conditions (76) have been applied. Further, by the Neu-
mann series [23] in the theory of Volterra integral equations, one can prove the existence of
the eigenfunctions ψ±, which allow analytic continuations off the real axis λ ∈ R as long as
the integrals on their right-hand sides converge (see, e.g., [24]). Based on the diagonal form
of Λ and the first assumption in (75), one can show that the integral equation for the first m
columns of ψ− contains only the exponential factor e−iαλ(x−y), and the integral equation
for the last n columns of ψ+ contains only the exponential factor eiαλ(x−y). Note that the
function factor e−iαλ(x−y) decays because of y < x in the integral, when λ takes values in
the upper half-plane C+, and the function factor eiαλ(x−y) also decays because of y > x in
the integral, when λ takes values in the upper half-plane C+. Accordingly, one knows that
those m + n columns are analytic in the upper half-plane C+ and continuous in the closed
upper half-plane C̄+. In a similar manner, one can show that the first m columns of ψ+

and the last n columns of ψ− are analytic in the lower half-plane C− and continuous in the
closed lower half-plane C̄−.

In what follows, we show how to prove the above statements. Let us split

ψ± = (ψ±1 , ψ±2 , · · · , ψ±m+n), (80)

namely, ψ±j denotes the jth column of φ± (1 ≤ j ≤ m + n). We would like to show that

the m + n column eigenfunctions, ψ−j , 1 ≤ j ≤ m, and ψ+
j , m + 1 ≤ j ≤ m + n, are

analytic with respect to λ in C+ and continuous with respect to λ in C̄+; and the m + n
row eigenfunctions, ψ+

j , 1 ≤ j ≤ m, and ψ−j , m + 1 ≤ j ≤ m + n, are analytic with respect
to λ in C− and continuous with respect to λ in C̄−. Below, we only seek to prove the result
for ψ+

j , m + 1 ≤ j ≤ m + n, and the proofs for the other row and column eigenfunctions
follow analogously.

From the Volterra integral Equation (79), we know that

ψ+
j (λ, x) = ej −

∫ ∞

x
R1(λ, x, y)ψ+

j (λ, y) dy, 1 ≤ j ≤ m, (81)

and

ψ+
j (λ, x) = ej −

∫ ∞

x
R2(λ, x, y)ψ+

j (λ, y) dy, m + 1 ≤ j ≤ m + n, (82)

where ej, 1 ≤ j ≤ m + n, are the standard basis of Rm+n and the square matrices R1 and
R2 are given by

R1(λ, x, y) = i

[
0 p(y)

e−iαλ(x−y)q(y) 0

]
,
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and

R2(λ, x, y) = i

[
0 eiαλ(x−y)p(y)

q(y) 0

]
.

Let us first prove that for each m + 1 ≤ j ≤ m + n, the Neumann series
∞

∑
k=0

ψ+
j,k(λ, x), (83)

whose terms are defined recursively by

ψ+
j,0(λ, x) = ej, ψ+

j,k+1(λ, x) = −
∫ ∞

x
R2(λ, x, y)ψ+

j,k(λ, y) dy, k ≥ 1, (84)

will determine the solution to (81). This statement will be true, if we can show that the
Neumann series converges uniformly for both x ∈ R and λ ∈ C̄+. Based on (84), an
application of the mathematical induction yields

|ψ+
j,k(λ, x)| ≤ 1

k!

(∫ ∞

x
‖P(y)‖dy

)k
, m + 1 ≤ j ≤ m + n, k ≥ 0,

for both x ∈ R and λ ∈ C̄+, where | · | stands for the Euclidean norm for vectors and ‖ · ‖
denotes the Frobenius norm for square matrices. By using the Weierstrass M-test, it follows
from this estimation that

ψ+
j (λ, x) =

∞

∑
k=0

ψ+
j,k(λ, x), m + 1 ≤ j ≤ m + n, (85)

uniformly converges for both λ ∈ C̄+ and x ∈ R, and all ψ+
j (λ, x), m + 1 ≤ j ≤ m + n, are

continuous with respect to λ in C̄+, because so are all ψ+
j,k(λ, x), m + 1 ≤ j ≤ m + n, k ≥ 0.

Next, we would like to consider the differentiability of ψ+
j (λ, x), m + 1 ≤ j ≤ m + n,

with respect to λ in C+ (similarly, we can show the differentiability with respect to x in
R). Let us fix an integer m + 1 ≤ j ≤ m + n. For a complex number µ in C+, take a disk
Bρ(µ) = {λ ∈ C | |λ− µ| ≤ ρ} with a radius ρ > 0 such that Bρ(µ) ⊆ C+. Then, there is a
constant C(ρ) > 0 such that |αxe−iαλx| ≤ C(ρ) for λ ∈ Bρ(µ) and x ≥ 0. We consider the
following Neumann series:

∞

∑
k=0

ψ+
j,λ,k(λ, x) (86)

where ψ+
j,λ,0 = 0 and ψ+

j,λ,k = 0, k ≥ 1, are defined recursively by

ψ+
j,λ,k+1(λ, x) = −

∫ ∞

x
R2,λ(λ, x, y)ψ+

j,k(λ, y) dy−
∫ ∞

x
R2(λ, x, y)ψ+

j,λ,k(λ, y) dy, k ≥ 0, (87)

with ψ+
j,k, k ≥ 0, being defined by (84) and R2,λ being given by

R2,λ(λ, x, y) =
∂

∂λ
R2(λ, x, y) =

[
0 −α(x− y)eiαλ(x−y)p(y)

0 0

]
.

It can be easily shown by applying the mathematical induction that

|ψ+
j,λ,k(λ, x)| ≤ 1

k!

{[
C(ρ) + 1

] ∫ ∞

x
‖P(y)‖dy

}k
, k ≥ 0,

for both x ∈ R and λ ∈ Bρ(µ). Now, based on the Weierstrass M-test, the Neumann series
determined by (86) converges uniformly for both x ∈ R and λ ∈ Bρ(µ), and through the
term-by-term differentiability theorem, it converges to the derivative of ψ+

j with respect

to λ, since ψ+
j,λ,k =

∂
∂λ ψ+

j,k, k ≥ 0. It follows that ψ+
j is analytic at any point λ ∈ Bρ(µ), and

thus, particularly at the point µ. This tells that all ψ+
j , m + 1 ≤ j ≤ m + n, are analytic with

respect to λ in C+, indeed. Therefore, the required proof is finished.
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Now, on the basis of these analyses, we can define the generalized matrix Jost solution
T+ as

T+ = T+(x, λ) = (ψ−1 , · · · , ψ−m , ψ+
m+1, · · · , ψ+

m+n) = ψ−H1 + ψ+H2, (88)

where H1 and H2 are given by

H1 = diag(Im, 0, · · · , 0︸ ︷︷ ︸
n

), H2 = diag(0, · · · , 0︸ ︷︷ ︸
m

, In ), (89)

and know that T+ is analytic with respect to λ in the upper half-plane C+ and continuous
with respect to λ in the closed upper half-plane C̄+. Additionally, the generalized matrix
Jost solution

(ψ+
1 , · · · , ψ+

m , ψ−m+1, · · · , ψ−m+n) = ψ+H1 + ψ−H2 (90)

is analytic with respect to λ in the lower half-plane C− and continuous with respect to λ in
the closed lower half-plane C̄−.

To determine the other generalized matrix Jost solution T−, we adopt the analytic
counterpart of T+ in the lower half-plane C−, which can be generated from the adjoint
counterparts of the matrix spectral problems. Recall that the inverse matrices (φ±)−1 and
(ψ±)−1 provide solutions to the two corresponding adjoint matrix spectral problems. Thus,
upon splitting ψ̃± into rows,

ψ̃± =


ψ̃±,1

ψ̃±,2

...
ψ̃±,m+n

, (91)

namely, ψ̃±,j stands for the jth row of ψ̃± (1 ≤ j ≤ m + n), one can show by similar
arguments that one can define the generalized matrix Jost solution T− as the adjoint matrix
solution of (70), i.e.,

T− =



ψ̃−,1

...
ψ̃−,m

ψ̃+,m+1

...
ψ̃+,m+n


= H1ψ̃− + H2ψ̃+ = H1(ψ

−)−1 + H2(ψ
+)−1. (92)

This is analytic at λ in the lower half-plane C− and continuous at λ in the closed lower
half-plane C̄−. Additionally, the other generalized matrix Jost solution of (70),

ψ̃+,1

...
ψ̃+,m

ψ̃−,m+1

...
ψ̃−,m+n


= H1ψ̃+ + H2ψ̃− = H1(ψ

+)−1 + H2(ψ
−)−1, (93)

is analytic at λ in the upper half-plane C+ and continuous at λ in the upper half-plane C̄+.
Furthermore, based on det ψ± = 1 and the scattering relation (78) for ψ+ and ψ−, one

immediately obtains
limx→∞ T+(x, λ) =

[
S11(λ) 0

0 In

]
, λ ∈ C̄+,

limx→−∞ T−(x, λ) =

[
Ŝ11(λ) 0

0 In

]
, λ ∈ C̄−,

(94)
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and thus,

det T+(x, λ) = det S11(λ), det T−(x, λ) = det Ŝ11(λ), (95)

where we split S(λ) and S−1(λ) into block matrices as follows:

S(λ) =

[
S11(λ) S12(λ)

S21(λ) S22(λ)

]
, S−1(λ) = (S(λ))−1 =

[
Ŝ11(λ) Ŝ12(λ)

Ŝ21(λ) Ŝ22(λ)

]
. (96)

From (94), we know that S11, Ŝ11 are m×m matrices; and so, S12, Ŝ12 are m× n matrices,
S21, Ŝ21 are n×m matrices, and S22, Ŝ22 are n× n matrices, since S(λ) is a square matrix of
size m + n. Also, it follows from the uniform convergence of the Neumann series, defined
previously, that S11(λ) and Ŝ11(λ) are analytic at λ ∈ C+ and λ ∈ C−, respectively.

Now, one can define the two unimodular generalized matrix Jost solutions as follows:

G+(x, λ) = T+(x, λ)

[
S−1

11 (λ) 0

0 In

]
, λ ∈ C̄+, (97)

and

(G−)−1(x, λ) =

[
Ŝ−1

11 (λ) 0

0 In

]
T−(x, λ), λ ∈ C̄−. (98)

These two generalized matrix Jost solutions allow us to establish the required matrix
Riemann–Hilbert problems on the real line:

G+(x, λ) = G−(x, λ)G0(x, λ), λ ∈ R, (99)

for the reduced nonlocal matrix integrable mKdV type equations (54). Here, the jump
matrix G0 is given by

G0(x, λ) = E

[
Ŝ−1

11 (λ) 0

0 In

]
S̃(λ)

[
S−1

11 (λ) 0

0 In

]
E−1, (100)

which is a consequence of (78). The matrix S̃(λ) has the following factorization:

S̃(λ) = (H1 + H2S(λ))(H1 + S−1(λ)H2), (101)

which can be shown to be

S̃(λ) =

[
Im Ŝ12

S21 In

]
. (102)

Note that for the presented Riemann–Hilbert problems, the canonical normalization
conditions

G±(x, λ)→ Im+n, when λ ∈ C̄± → ∞, (103)

come from the Volterra integral equations in (79). Moreover, from the properties of eigen-
functions in (72) and (74), we can have

(G+)†(λ∗) = Σ(G−)−1(λ)Σ−1, (104)

and

(G+)†(−x,−t,−λ∗) = ∆(G−)−1(λ)∆−1. (105)

It therefore follows that the the jump matrix G0 satisfies the following involution properties:

G†
0(λ) = ΣG0(λ)Σ−1, G†

0(−x,−t,−λ) = ∆G0(λ)∆−1, λ ∈ R. (106)
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3.3. Evolution of the Scattering Data

For the completeness of the required direct scattering transforms, we compute the
derivative of the eigenfunction relation (78) with time t, and apply the following temporal
matrix spectral problems:

ψ±t = iλ2s+1[Ω, ψ±] + iQ[2s+1]ψ±, (107)

where s ≥ 0 is fixed. Then, one can know that the scattering matrix S possesses the
following evolution equation:

St = iλ2s+1[Ω, S]. (108)

This leads to the time evolution:

S12 = S12(t, λ) = S12(0, λ) eiβλ2s+1t, S21 = S21(t, λ) = S21(0, λ) e−iβλ2s+1t, (109)

for the time-dependent scattering coefficients, and tells that all remaining scattering coeffi-
cients do not depend on the time variable t.

3.4. Gelfand–Levitan–Marchenko Type Equations

To determine the generalized matrix Jost solutions, we compute equivalent Gelfand–
Levitan–Marchenko type integral equations. To this end, we transform the associated
Riemann–Hilbert problems in (99) into the following problems:{

G+ − G− = G−v, v = G0 − Im+n, on R,

G± → Im+n as λ ∈ C̄± → ∞,
(110)

where each jump matrix G0 is defined by (100) and (102).
Define G(λ) = G±(λ) for λ ∈ C±. To avoid the spectral singularity, we suppose

that G has only simple poles off R: {ξ j}R
j=1, where R ≥ 1 is an arbitrarily given integer.

Further, define

G̃±(λ) = G±(λ)−
R

∑
j=1

Gj

λ− ξ j
, λ ∈ C̄±; G̃(λ) = G̃±(λ), λ ∈ C±, (111)

where Gj denotes the residue of G at λ = ξ j, namely,

Gj = res(G(λ), ξ j) = lim
λ→ξ j

(λ− ξ j)G(λ). (112)

Evidently, one has: {
G̃+ − G̃− = G+ − G− = G−v, on R,

G̃± → Im+n as λ ∈ C̄± → ∞.
(113)

Then, upon applying the Sokhotski–Plemelj formula [25], one obtains the solution to each
problem in (113):

G̃(λ) = Im+n +
1

2πi

∫ ∞

−∞

(G−v)(ξ)
ξ − λ

dξ. (114)

Computing the limit as λ→ ξl engenders:

LHS = lim
λ→ξl

G̃ = Fl −
R

∑
j 6=l

Gj

ξl − ξ j
, RHS = Im+n +

1
2πi

∫ ∞

−∞

(G−v)(ξ)
ξ − ξl

dξ, (115)

where:

Fl = lim
λ→ξl

(λ− ξl)G(λ)− Gl
λ− ξl

, 1 ≤ l ≤ R, (116)
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and consequently, we arrive at:

Im+n − Fl +
R

∑
j 6=l

Gj

ξl − ξ j
+

1
2πi

∫ ∞

−∞

(G−v)(ξ)
ξ − ξl

dξ = 0, 1 ≤ l ≤ R, (117)

which define the required Gelfand–Levitan–Marchenko type integral equations.
All these equivalent integral equations completely determine solutions to the result-

ing Riemann–Hilbert problems and thus the required generalized matrix Jost solutions.
However, little is known regarding the existence and uniqueness of solutions. However, in
the reflectionless case, a formulation of solutions will be given for the reduced nonlocal
reverse spacetime matrix integrable mKdV type equations in the next section.

3.5. Recovering the Potential Matrix

To obtain the potential matrix P from the unimodular generalized matrix Jost solutions,
let us consider an asymptotic expansion:

G+(x, t, λ) = Im+n +
1
λ

G+
1 (x, t) + O(

1
λ2 ), λ→ ∞. (118)

Upon plugging the above asymptotic expansion into the matrix spectral problem (66) and
making a comparison of constant terms, one obtains

P = −[Λ, G+
1 ] = lim

λ→∞
λ[G+(λ), Λ]. (119)

Consequently, the potential matrix is given by

P =

[
0 −αG+

1,12

αG+
1,21 0

]
, (120)

where the matrix G+
1 has been similarly partitioned into a block matrix as follows:

G+
1 =

[
G+

1,11 G+
1,12

G+
1,21 G+

1,22

]
=

[
(G+

1,11)n×n (G+
1,12)n×m

(G+
1,21)m×n (G+

1,22)m×m

]
. (121)

Therefore, the solutions to the matrix AKNS equations (39) are given by:

p = −αG+
1,12, q = αG+

1,21. (122)

When the reduction conditions in (46) and (47) are satisfied, the reduced matrix potential p
solves the reduced nonlocal matrix integrable mKdV type Equation (54).

To sum up, this provides a Riemann–Hilbert problem formulation of the inverse scat-
tering transform for computing solutions to the reduced nonlocal matrix integrable mKdV
type equations (54). It starts from the scattering data in S(λ), and then computes the jump
matrix G0(λ). The potential matrix P finally follows from the solution {G+(λ), G−(λ)} of
the associated Riemann–Hilbert problems.

4. Soliton Solutions
4.1. General Formulation

Let N ≥ 1 be another given integer. Assume that the function detS11(λ) has N zeros,
λk ∈ C, 1 ≤ k ≤ N, and the function detŜ11(λ) also has N zeros, λ̂k ∈ C, 1 ≤ k ≤ N.

In order to compute soliton solutions explicitly, we additionally assume that each of
these zeros, λk and λ̂k, 1 ≤ k ≤ N, is geometrically simple. Thus, we know that each of
ker T+(λk) and ker T−(λ̂k), 1 ≤ k ≤ N contains only a single column and row basis vector,
respectively. We take vk ∈ ker T+(λk), vk 6= 0, and v̂k ∈ ker T−(λk), v̂k 6= 0, for 1 ≤ k ≤ N.
In this way, we have:

T+(λk)vk = 0, v̂kT−(λ̂k) = 0, 1 ≤ k ≤ N. (123)
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It is known that soliton solutions are associated with the situation where G0 = Im+n is
taken in each Riemann–Hilbert problem in (99). Such a situation can be met if we take that
S21 = Ŝ12 = 0—namely, take all zero reflection coefficients in the scattering problem.

Such a kind of specific Riemann–Hilbert problems, which possess the canonical nor-
malization conditions in (103) and the zero structures given in (123), is solvable [8,26], in
the local case of

{λk | 1 ≤ k ≤ N} ⊂ C+, {λ̂k | 1 ≤ k ≤ N} ⊂ C−, (124)

and therefore, we can present the potential matrix P exactly, which generates soliton
solutions.

In the nonlocal case, we cannot keep the condition (124). Therefore, to present a
general formulation of solutions to reflectionless Riemann–Hilbert problems in the nonlocal
case, we assume that for N = 2N1 + N2, where N1, N2 ≥ 0 are two integers, we can make
the rearrangements of eigenvalues λk, 1 ≤ k ≤ N and adjoint eigenvalues λ̂k, 1 ≤ k ≤ N:

λ̄k, 1 ≤ k ≤ N : λ1, · · · , λN1 , λ̂N1+1, · · · , λ̂2N1 , λ2N1+1, · · · , λN ∈ C+, (125)

and

ˆ̄λk, 1 ≤ k ≤ N : λ̂1, · · · , λ̂N1 , λN1+1, · · · , λ2N1 , λ̂2N1+1, · · · , λ̂N ∈ C−, (126)

and the rearrangements for their corresponding eigenfunctions and adjoint eigenfunctions:

v̄k, 1 ≤ k ≤ N : v1, · · · , vN1 , v̂T
N1+1, · · · , v̂T

2N1
, v2N1+1, · · · , vN , (127)

and
ˆ̄vk, 1 ≤ k ≤ N : v̂1, · · · , v̂N1 , vT

N1+1, · · · , vT
2N1

, v̂2N1+1, · · · , v̂N . (128)

Then, we introduce

G+(λ) = Im+n −
N

∑
k,l=1

v̄k(M̄−1)kl ˆ̄vl

λ− ˆ̄λl
, (G−)−1(λ) = Im+n +

N

∑
k,l=1

v̄k(M̄−1)kl ˆ̄vl

λ− λ̄k
, (129)

where M̄ is a square matrix M̄ = (m̄kl)N×N with its entries determined by:

m̄kl =
ˆ̄vk v̄l

λ̄l − ˆ̄λk
, 1 ≤ k, l ≤ N. (130)

Therefore, G+(λ) and G−(λ) are analytical in C+ and C−, respectively. By an analogous
argument to the one in [12], we can prove that G+(λ) and G−(λ) solve the corresponding
reflectionless Riemann–Hilbert problem:

(G−)−1(λ)G+(λ) = Im+n, λ ∈ R. (131)

Since the zeros λk and λ̂k do not depend on the space and time variables, one can
readily determine the spatial and temporal evolutions for the kernel vectors, vk(x, t) and
v̂k(x, t), 1 ≤ k ≤ N. For example, one can compute vk(x, t), 1 ≤ k ≤ N, as follows. Taking
the x-derivative of both sides of the first set of equations in (123), and applying (66) and
then again the first set of equations in (123), one obtains:

T+(x, λk)
(dvk

dx
− iλkΛvk

)
= 0, 1 ≤ k ≤ N.

Consequently, for each 1 ≤ k ≤ N, dvk
dx − iλkΛvk is a kernel vector T+(x, λk), and hence, a

constant multiple of vk, because ker T+(λk) is one-dimensional. Therefore, without loss of
generality, one can just assume:

dvk
dx

= iλkΛvk, 1 ≤ k ≤ N. (132)
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The time dependence of vk

dvk
dt

= iλ2s+1
k Ωvk, 1 ≤ k ≤ N, (133)

can be obtained in a similar manner via applying the associated temporal matrix spectral
problem, i.e., (67). As a consequence of these differential equations, we get:

vk(x, t) = eiλkΛx+iλ2s+1
k Ωtwk, 1 ≤ k ≤ N, (134)

and completely similarly, we can obtain:

v̂k(x, t) = ŵke−iλ̂kΛx−iλ̂2s+1
k Ωt, 1 ≤ k ≤ N, (135)

where wk and ŵk, 1 ≤ k ≤ N, are constant column and row vectors, respectively.
Now, based on the solutions in (129), one obtains:

G+
1 = −

N

∑
k,l=1

v̄k(M̄−1)kl ˆ̄vl , (136)

and further, the presentations in (122) give rise to the N-soliton solutions to the matrix
AKNS Equation (39):

p = α
N

∑
k,l=1

v̄1
k(M̄−1)kl ˆ̄v2

l , q = −α
N

∑
k,l=1

v̄2
k(M̄−1)kl ˆ̄v1

l . (137)

Here, for each 1 ≤ k ≤ N, we have made the splittings v̄k = ((v̄1
k)

T , (v̄2
k)

T)T and
ˆ̄vk = ( ˆ̄v1

k , ˆ̄v2
k), where v̄1

k and ˆ̄v1
k are column and row vectors of dimension m, respectively,

while v̄2
k and ˆ̄v2

k are column and row vectors of of dimension n, respectively.
To present N-soliton solutions for the reduced nonlocal matrix integrable mKdV type

Equation (54), one needs to check if G+
1 determined by (136) possesses the involution

properties:

(G+
1 )† = −ΣG+

1 Σ−1, (G+
1 )†(−x,−t) = ∆G+

1 ∆−1. (138)

These mean that the resulting potential matrix P determined by (120) will satisfy the group
reduction conditions in (46) and (47). In this way, the above N-soliton solutions to the
matrix AKNS Equation (39) reduce to the following N-soliton solutions:

p = α
N

∑
k,l=1

v̄1
k(M̄−1)kl ˆ̄v2

l , (139)

to the reduced nonlocal matrix integrable mKdV type Equation (54).

4.2. Realization

Let us now check how to realize the involution properties in (138).
First, we take N distinct zeros of det T+(λ) (i.e., eigenvalues of the matrix spectral

problems with the zero potential):

{λk | 1 ≤ k ≤ N} = {µ1, · · · , µN1 , −µ1, · · · , −µN1 , iν1, · · · , iνN2} (140)

and N zeros of det T−(λ) (i.e., eigenvalues of the adjoint matrix spectral problems with the
zero potential):

{λ̂k | 1 ≤ k ≤ N} = {µ∗1 , · · · , µ∗N1
, −µ∗1 , · · · , −µ∗N1

, −iν1, · · · , −iνN2}, (141)

where µk ∈ C+, µk 6∈ iR, and νk ∈ R+, It is easy to see that all ker T+(λk), 1 ≤ k ≤ N, are
linearly spanned by

vk = vk(x, t, λk) = eiλkΛx+iλ2s+1
k Ωtwk, 1 ≤ k ≤ N, (142)
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respectively, where each wk (1 ≤ k ≤ N) is a constant column vector. These column
vectors in (142) are eigenfunctions of the matrix spectral problems with the zero potential
associated with the eigenvalue λk, 1 ≤ k ≤ N. Furthermore, following the proceeding
analyses in Section 3.1, ker T−(λk), 1 ≤ k ≤ N, are linearly spanned by

v̂k = v̂k(x, t, λ̂k) = v†
k(λk)Σ = v†

N1+k(−x,−t,−λk)∆, 1 ≤ k ≤ N1, (143)

v̂N1+k = v̂N1+k(x, t, λ̂N1+k) = v†
N1+k(λN1+k)Σ = v†

k(−x,−t,−λk)∆, 1 ≤ k ≤ N1, (144)

and

v̂k = v̂k(x, t, λ̂k) = v†
k(λk)Σ = v†

k(−x,−t,−λk)∆, 2N1 + 1 ≤ k ≤ N, (145)

respectively. These row vectors v̂k, 1 ≤ k ≤ N, are eigenfunctions of the adjoint spectral
problems with the zero potential associated with the adjoint eigenvalues λ̂k, 1 ≤ k ≤ N,
respectively. It is direct to see that the choices in (143)–(145) yield the selections on
wk, 1 ≤ k ≤ N: 

w†
k(∆Σ−1 − Σ∆−1) = 0, 1 ≤ k ≤ N1,

wk = ∆∗−1Σwk−N1 , N1 + 1 ≤ k ≤ 2N1,

w†
k Σ = w†

k ∆, 2N1 + 1 ≤ k ≤ N,

(146)

where ∗ denotes the complex conjugate of a matrix. We emphasize that all these selections
aim to satisfy the reduction conditions in (46) and (47).

Now, note that when the solutions to the special Riemann–Hilbert problems, defined
by (129) and (130), possess the involution properties in (104) and (105), the corresponding
relevant matrix G+

1 will satisfy the involution properties in (138), which are consequences of
the group reductions in (42) and (43). Therefore, when the selections in (146) are made, the
Formula (139), together with (129), (130), and (142)–(145), gives rise to N-soliton solutions
to the reduced nonlocal matrix integrable mKdV type equations (54).

When m = n = N = 1, let us fix α = α1 − α2 = −1, take λ1 = iν, λ̂1 = −iν, ν ∈ R,
ν 6= 0, and due to the last requirement in (146), choose

w1 = (w1,1, w1,2,−σw1,2)
T ,

where w1,1, w1,2 are real and σ2 = 1. This leads to a class of one-soliton solutions to the
reduced nonlocal integrable mKdV Equation (59):

p1 = − 2iσνw1,1w1,2

w2
1,1 eνx+ν3(β1−β2)t + 2σw2

1,2 e−νx−ν3(β1−β2)t
, (147)

where ν ∈ R is abitrary, but w1,1, w1,2 ∈ R need to satisfy

w2
1,1 − 2w2

1,2 = 0, (148)

which comes from the involution properties in (138).

5. Concluding Remarks

We have proposed type (λ∗,−λ∗) reduced nonlocal matrix integrable mKdV hier-
archies of equations, by taking advantage of two group reductions of the matrix AKNS
spectral problem of arbitrary order, and formulated Riemann–Hilbert problems for the
resulting matrix integrable mKdV type equations, by use of the Lax pair and the adjoint
Lax pair of matrix spectral problems. The reflectionless Riemann–Hilbert problems have
been applied to soliton solutions of the proposed reduced matrix integrable mKdV type
equations.
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The key step in our construction is to use two group reductions simultaneously to
generate reduced integrable equations, of which one is local and the other is nonlocal.
In our analyses of Riemann–Hilbert problems, we have reformulated solutions to the
corresponding reflectionless Riemann–Hilbert problems, based on the distribution of eigen-
values and adjoint eigenvalues. Such a treatment for Riemann–Hilbert problems is vital to
the presentation of soliton solutions in the nonlocal case. It should also be interesting to
apply the idea of adopting a pair of group reductions to other matrix spectral problems to
generate reduced nonlocal integrable equations.

Indeed, the Riemann–Hilbert approach is very effective in presenting soliton solu-
tions (see also, e.g., [27–29]), and the technique has been generalized to solve various
initial boundary value problems of nonlinear integrable equations on the half-line or
the finite interval [30,31]. There exist many other powerful approaches to soliton solu-
tions, which include the Hirota direct method [4], the Wronskian technique [32,33], the
generalized bilinear technique [34,35], the Bell polynomial approach [36,37], and the Dar-
boux transformation [3,38]. It would be of significant importance to search for connections
among different methods to exhibit dynamical behaviors of soliton solutions. It is an-
other interesting topic for future study to establish Riemann–Hilbert problems to solve
generalized integrable counterparts—for example, integrable couplings, super-symmetric
integrable equations, and fractional spacetime analogous equations. We would also like
to emphasize that it would be particularly interesting to construct diverse exact solutions
other than solitons to nonlinear integrable equations—for instance, positon solutions [39],
or more generally, complexiton solutions [40], rogue wave and lump solutions [41–44],
solitonless solutions [45], and algebro-geometric solutions [46] from the perspective of
Riemann–Hilbert problems.
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