The Results on Coincidence and Common Fixed Points for a New Type Multivalued Mappings in b-Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- (1b)
- if and only if ;
- (2b)
- ;
- (3b)
- .
- (1)
- ;
- (2)
- ;
- (3)
- ,
- (i)
- ;
- (ii)
- for all ;
- (iii)
- .
3. Main Results
- (i)
- and , therefore ;
- (ii)
- is a complete subspace of Y;
- (iii)
- and , so ;
- (iv)
- , therefore, condition (1) is satisfied;
- (v)
- ;
- (vi)
- , , so F and g are weakly compatible.
- (i)
- and , therefore, ;
- (ii)
- is a complete subspace of Y;
- (iii)
- and ;
- (iv)
- (v)
- ;
- (vi)
- , therefore F and g are weakly compatible.
4. The Common Endpoints for Hybrid Dynamical System
- (1)
- ;
- (2)
- if and only if ;
- (3)
- ;
- (4)
- there exists such that ,
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ćirić, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Arand- elović, I.D.; Mateljević, M.; Ljubomir, B. Ćirić (1935–2016). Filomat 2017, 31, 3035–3040. [Google Scholar]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 257–290. [Google Scholar] [CrossRef]
- Danes, J. Two fixed point theorem in topological and metric spaces. Bull. Aust. Math. Soc. 1976, 14, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.A. Fixed points of mappings on metric spaces. Stud. Topol. II—Zap. Naučn. Sem. Leningr. Otdel. Mat. Inst. Steklov (LOMI) 1976, 66, 5–102. (In Russian) [Google Scholar] [CrossRef]
- Arand- elović, I.D.; Rajović, M.; Kilibarda, V. On nonlinear quasi-contractions. Fixed Point Theory 2008, 9, 387–394. [Google Scholar]
- Bessenyei, M. Nonlinear quasicontractions in complete metric spaces. Expo. Math. 2015, 33, 517–525. [Google Scholar] [CrossRef]
- Aleksić, S.; Huang, H.; Mitrović, Z.D.; Radenović, S. Remarks on some fixed point results in b-metric spaces. J. Fixed Point Theory Appl. 2018, 20, 147. [Google Scholar] [CrossRef]
- Das, K.M.; Naik, K.V. Common fixed point theorems for commuting maps on metric spaces. Proc. Am. Math. Soc. 1979, 77, 369–373. [Google Scholar]
- Di Bari, C.; Vetro, P. Nonlinear contractions of Ćirić type. Fixed Point Theory 2012, 13, 453–460. [Google Scholar]
- Fisher, B. Set-valued mappings on metric spaces. Fund. Math. 1981, 112, 141–145. [Google Scholar] [CrossRef]
- Ćirić, L.B.; Ume, J.S. Multi-valued mappings on metric spaces. Mathematica 2004, 46, 41–46. [Google Scholar]
- Arand- elović, I.D.; D- urić, S.N. On multi-valued nonlinear quasi-contractions. Int. J. Contemp. Math. Sci. 2009, 4, 1541–1546. [Google Scholar]
- Mitrović, Z.D.; Arand- elović, I.D.; Mišić, V.; Dinmohammadi, A.; Parvaneh, V. A Common Fixed Point Theorem for Nonlinear Quasi-Contractions on b-Metric Spaces with Application in Integral Equations. Adv. Math. Phys. 2020, 2020, 2840482. [Google Scholar] [CrossRef]
- Sigh, S.L.; Ha, K.S.; Cho, Y.J. Coincidence and fixed points of nonlinear hybrid contractions. Int. J. Math. Math. Sci. 1989, 12, 247–256. [Google Scholar]
- Shahzad, N.; Kamran, T. Coincidence points and R-weakly commuting maps. Arch. Math. (Brno) 2001, 37, 179–183. [Google Scholar]
- Singh, S.L.; Mishra, S.N. Coincidence and fixed points of non self hybrid contraction. J. Math. Anal. Appl. 2001, 256, 486–497. [Google Scholar] [CrossRef] [Green Version]
- Kamran, T. Coincidence and fixed points for hybrid strict contractions. J. Math. Anal. Appl. 2004, 299, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Nashine, H.L.; Imdad, M.; Ahmadullah, M. Common fixed point theorems for hybrid generalized (F, φ)—Contractions under common limit range property with applications. Ukr. Math. J. 2018, 69, 1784–1798. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Aleksić, S.; Mitrović, Z.D.; Radenović, S. Picard sequences in b-metric spaces. Fixed Point Theory 2020, 21, 35–46. [Google Scholar] [CrossRef]
- Aydi, H.; Bota, M.F.; Karapınar, E.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Czerwik, S. Fixed point theorems in generalized b-metric spaces. In Modern Discrete Mathematics and Analysis: With Applications in Cryptography, Information Systems and Modeling; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–9. [Google Scholar]
- Bota, M.; Molnár, A.; Varga, C. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21–28. [Google Scholar]
- Brzdȩk, J. Comments on fixed point results in classes of function with values in a b-metric space. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. Math. 2022, 116, 35. [Google Scholar] [CrossRef]
- Cobzaş, S.; Czerwik, S. The completion of generalized b-metric spaces and fixed points. Fixed Point Theory 2020, 21, 133–150. [Google Scholar] [CrossRef]
- Czerwik, S. On b-metric spaces and Brower and Schauder fixed point principles. In Approximation Theory and Analytic Inequalities; Themistocles, M.R., Ed.; Springer: Cham, Switzerland, 2021; pp. 71–86. [Google Scholar]
- Czerwik, S.; Rassias, M.T. Fixed point theorems for a system of mappings in generalized b-metric spaces. In Mathematical Analysis and Applications; Themistocles, M.R., Panos, M.P., Eds.; Springer: Cham, Switzerland, 2019; Volume 154, pp. 41–51. [Google Scholar]
- Jleli, M.B.; Samet, B.; Vetro, C.; Vetro, F. Fixed points for multivalued mappings in b-metric spaces. Abstr. Appl. Anal. 2015, 2015, 718074. [Google Scholar] [CrossRef]
- Karapınar, E.; Mitrović, Z.D.; Öztûrk, A.; Radenović, S. On a theorem of Ćirić in b-metric spaces. Rend. Circ. Mat. Palermo 2021, 70, 217–225. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Ahmed, A.; Salunke, J.N. A cone generalized b-metric like space over Banach algebra and contraction principle. Thai J. Math. 2021, 19, 583–592. [Google Scholar]
- Mitrović, Z.D. Fixed point results in b-metric space. Fixed Point Theory 2019, 20, 559–566. [Google Scholar] [CrossRef]
- Nashine, H.K.; Kadelburg, Z. Generalized JS-contractions in b-metric spaces with application to Urysohn integral equations. In Advances in Metric Fixed Point Theory and Applications; Cho, Y.J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C., Eds.; Springer: Singapore, 2021; pp. 385–408. [Google Scholar]
- Petrov, E.A.; Salimov, R.R. Quasisymmetric mappings in b-metric spaces. J. Math. Sci. N. Y. 2021, 256, 770–778. [Google Scholar] [CrossRef]
- Rakić, D.; Mukheimer, A.; Došenović, T.; Mitrović, Z.D.; Radenović, S. On some new fixed point results in fuzzy b-metric spaces. J. Inequal. Appl. 2020, 2020, 99. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256. [Google Scholar] [CrossRef]
- Jachymski, J.; Jóźwik, I. On Kirk’s asymptotic contractions. J. Math. Anal. Appl. 2004, 300, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Aubin, J.P.; Ekeland, I. Applied Nonlinear Analysis; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Aubin, J.P.; Frankowska, H. Set-Valued Analaysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
- Köte, G. Topological Vector Spaces I; Springer: New York, NY, USA, 1969. [Google Scholar]
- Nieuwenhuis, J.W. Some remarks on set-valued dynamical systems. J. Aust. Math. Soc. (Ser. B) 1981, 22, 308–313. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savanović, N.; Aranđelović, I.D.; Mitrović, Z.D. The Results on Coincidence and Common Fixed Points for a New Type Multivalued Mappings in b-Metric Spaces. Mathematics 2022, 10, 856. https://doi.org/10.3390/math10060856
Savanović N, Aranđelović ID, Mitrović ZD. The Results on Coincidence and Common Fixed Points for a New Type Multivalued Mappings in b-Metric Spaces. Mathematics. 2022; 10(6):856. https://doi.org/10.3390/math10060856
Chicago/Turabian StyleSavanović, Nikola, Ivan D. Aranđelović, and Zoran D. Mitrović. 2022. "The Results on Coincidence and Common Fixed Points for a New Type Multivalued Mappings in b-Metric Spaces" Mathematics 10, no. 6: 856. https://doi.org/10.3390/math10060856
APA StyleSavanović, N., Aranđelović, I. D., & Mitrović, Z. D. (2022). The Results on Coincidence and Common Fixed Points for a New Type Multivalued Mappings in b-Metric Spaces. Mathematics, 10(6), 856. https://doi.org/10.3390/math10060856