Next Article in Journal
Preimage Problem Inspired by the F-Transform
Next Article in Special Issue
A New Four-Step Iterative Procedure for Approximating Fixed Points with Application to 2D Volterra Integral Equations
Previous Article in Journal
Generalized Johnson Distributions and Risk Functionals
Previous Article in Special Issue
The Results on Coincidence and Common Fixed Points for a New Type Multivalued Mappings in b-Metric Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Generalized Contractions by Employing Two Control Functions and Coupled Fixed-Point Theorems with Applications

1
Department of Mathematics, Unaizah College of Sciences and Arts, Qassim University, Buraydah 52571, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
3
Mathematics Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Mathematics 2022, 10(17), 3208; https://doi.org/10.3390/math10173208
Submission received: 25 July 2022 / Revised: 27 August 2022 / Accepted: 1 September 2022 / Published: 5 September 2022
(This article belongs to the Special Issue Mathematical Analysis and Functional Analysis and Their Applications)

Abstract

:
In this study, we obtain certain coupled fixed-point results for generalized contractions involving two control functions in a controlled metric space. Additionally, we establish some coupled fixed-point results in graph-enabled controlled metric spaces. Many well-known results from the literature will be expanded upon and modified by our results. In order to demonstrate the validity of the stated results, we also offer some examples. Finally, we apply the theoretical results to obtain the solution to a system of integral equations.

1. Introduction and Preliminaries

It is possible to find analogous fixed-point (FP) solutions to many nonlinear functional equation-based problems in science and engineering. The operator equation Γ θ = 0 can be stated as an FP equation Γ θ = θ , where Γ is self-mapping with an appropriate domain. In order to solve issues that arise in various branches of mathematical analysis, such as split feasibility problems, variational inequality issues, nonlinear optimization issues, equilibrium issues, complementarity issues, and problems proving the existence of solutions to integral and differential equations, FP theory provides crucial tools.
FP theory has spread widely because of its entry into many vital disciplines, such as topology, game theory, artificial intelligence, dynamical systems (and chaos), logic programming, economics, and optimal control. Furthermore, it has become an essential pillar of nonlinear analysis, where it is used to study the existence and uniqueness of the solutions for many differential and nonlinear integral equations [1,2,3,4,5].
In 1906, M. Fréchet fundamentally presented the manifest evolution of a metric space. Many researchers have generalized and expanded this approach in recent years as complex-valued metric space, cone metric space, F —metric space, M —metric space, orthogonal metric space, extended b —metric space, b —metric space, and controlled metric space (CM-space), among others, motivated by this contemporary concept.
In 1993, the idea of a b —metric space was presented by Czerwik [6], as follows:
Definition 1.
Assume that  Ω , s 1  and  η : Ω × Ω [ 0 , ) .  If for all  θ , ϑ , Ω ,  the assertions below hold:
(i) 
η θ , ϑ = 0  iff  θ = ϑ ;
(ii) 
η θ , ϑ = η ϑ , θ ;
(iii) 
η θ , s η θ , ϑ + η ϑ , ,
then the pair  Ω , η  is called a  b —metric space.
In 2017, the parameter s was replaced with the function φ : Ω × Ω [ 1 , ) by Kamran et al. [7] to obtain the notion of an extended b —metric space as the following:
Definition 2.
Suppose that  Ω , φ : Ω × Ω [ 1 , )  and  η : Ω × Ω [ 0 , ) .  If for all  θ , ϑ , Ω ,  the hypotheses below hold:
(i) 
η θ , ϑ = 0  iff  θ = ϑ ;
(ii) 
η θ , ϑ = η ϑ , θ ;
(iii) 
η θ , φ θ , η θ , ϑ + η ϑ , ,
then the pair  Ω , η  is called an extended  b —metric space.
Mlaiki et al. [8] presented a novel type of extended b —metric space in 2018:
Definition 3.
Suppose that  Ω , φ : Ω × Ω [ 1 , )  and  η : Ω × Ω [ 0 , ) .  If for all  θ , ϑ , Ω ,  the hypotheses below hold:
(i) 
η θ , ϑ = 0  iff  θ = ϑ ;
(ii) 
η θ , ϑ = η ϑ , θ ;
(iii) 
η θ , φ θ , ϑ η θ , ϑ + φ ϑ , η ϑ , ,
then  Ω , φ , η  is called a  C M -space.
Example 1
([8]). Consider  Ω = { 1 , 2 , } .  Let  η : Ω × Ω [ 0 , )  be so that
η θ , ϑ = 0 , if θ = ϑ , 1 θ , If ϑ is odd and θ is even , 1 ϑ , If θ is odd and ϑ is even , 1 , o t h e r w i s e .
Take φ : Ω × Ω [ 1 , ) as
φ θ , ϑ = θ , If ϑ is odd and θ is even , ϑ , If θ is odd and ϑ is even , 1 , o t h e r w i s e .
Then, η θ , ϑ is CM and Ω , φ , η is a CM-space.
Theorem 1
([8]). Let  Ω , φ , η  be a complete controlled metric space (CCM-space) and let  Z : Ω Ω  be so that
η Z θ , Z ϑ ϖ η θ , ϑ ,
for all  θ , ϑ Ω ,  where  0 ϖ < 1 .  For  θ 0 Ω ,  consider  θ k = Z k θ 0 .  Suppose that
sup j 1 lim i φ θ i + 1 , θ i + 2 φ θ i + 1 , θ j φ θ i , θ i + 1 < 1 ϖ .
In addition, assume that for every  θ Ω ,  we obtain  lim i φ θ i , θ  and  lim i φ θ , θ i ,  which exist and are finite. Then, there is  θ ^ Ω  so that  θ ^ = Z θ ^  which is unique.
In the context of a CM-space, Lateef [9] developed FP theorems of the sort discovered by Kannan [10], as follows:
Theorem 2
([9]). Let  Ω , φ , η  be a CCM-space and let  Z : Ω Ω  be such that
η Z θ , Z ϑ ϖ η θ , Z θ + η ϑ , Z ϑ ,
for all  θ , ϑ Ω ,  where  0 < ϖ < 1 2 .  For  θ 0 Ω ,  take  θ k = Z k θ 0 .  Suppose that
sup j 1 lim i φ θ i + 1 , θ i + 2 φ θ i + 1 , θ j φ θ i , θ i + 1 < 1 ϖ .
Furthermore, assume that for every  θ Ω ,  we obtain  lim i φ θ i , θ  and  lim i φ θ , θ i ,  which exist and are finite. Then, there is  θ ^ Ω  so that  θ ^ = Z θ ^  which is unique.
The following FP theorem of the Reich type was developed by Ahmad [11] in the same space:
Theorem 3
([11]). Let  Ω , φ , η  be a CCM-space and let  Z : Ω Ω  be self-mapping. Suppose that there are  ϖ 1 , ϖ 2 , ϖ 3 ( 0 , 1 )  so that  ϖ = ϖ 1 + ϖ 2 + ϖ 3 < 1  and
η Z θ , Z ϑ ϖ 1 η θ , ϑ + ϖ 2 η θ , Z θ + ϖ 3 η ϑ , Z ϑ ,
for all  θ , ϑ Ω .  For  θ 0 Ω ,  take  θ k = Z k θ 0 .  Suppose that
sup j 1 lim i φ θ i + 1 , θ i + 2 φ θ i + 1 , θ j φ θ i , θ i + 1 < 1 ϖ .
Moreover, assume that for every  θ Ω , lim i φ θ i , θ  and  lim i φ θ , θ i  are exist and are finite. Then, there is a unique FP of Z.
Different FP conclusions for single and multivalued mappings have been produced by numerous authors after studying CM-spaces. We urge readers to [12,13,14,15,16,17] for additional information in this direction.
On the other hand, Bhaskar and Lakhsmikantham [18] introduced and examined another direction, the coupled fixed point (CFP). Many scholars in this field have shown interest in it since they researched the CFP results using appropriate contraction mappings and used their findings to demonstrate the existence of solutions for periodic boundary value problems (see, for example, [19,20,21,22,23,24,25]).
In the context of CM-spaces, we obtain several CFP results in this study for generalized contractions using specific control functions. We also proved the main CFP theorem endowed with a graph in the mentioned space. To demonstrate the reliability of the established results, some examples are provided. Finally, we look into the solution of integral equations as an application of our main finding.

2. Main Results

We begin directly with the first main result.
Theorem 4.
Assume that  Ω , φ , η  is a CCM-space and  Z : Ω × Ω Ω .  Let  ξ , ϱ : Ω × Ω [ 0 , 1 )  be such that the postulates below hold:
(p1)
ξ Z θ , ϑ , Z , υ ξ θ , ϑ  and  ϱ Z θ , ϑ , Z , υ ϱ θ , ϑ ;
(p2)
ξ θ , = ξ , θ  and  ϱ θ , = ϱ , θ  with  ξ + ϱ θ , ϑ < 1 ;
(p3)
η Z θ , ϑ , Z , υ ξ θ , ϑ 2 η θ , + η ϑ , υ + ϱ θ , ϑ 2 η θ , Z θ , ϑ + η ϑ , Z ϑ , θ η , Z , υ + η υ , Z υ , 1 + η θ , + η ϑ , υ ,
for all  θ , ϑ , , υ Ω .  For  θ 0 , ϑ 0 Ω ,  we put  ξ θ 0 , ϑ 0 1 ϱ θ 0 , ϑ 0 = .  Let  φ ϑ i , ϑ i + 1 φ θ i , θ i + 1  and
sup j 1 lim i φ θ i + 1 , θ i + 2 φ θ i + 1 , θ j φ θ i , θ i + 1 < 1 ,
where  θ i + 1 = Z θ i , ϑ i  for each  i 0 .  Furthermore, if for every  θ , ϑ Ω , lim i φ θ i , θ  and  lim i φ θ , θ i  exist and are finite, then the mapping Z has a unique CFP.
Proof. 
Assume that θ 0 , 0 Ω × Ω . Construct sequences { θ i } and { ϑ i } in Ω by θ i + 1 = Z θ i , ϑ i and ϑ i + 1 = Z ϑ i , θ i , for all i 0 . From stipulation (1), we obtain
η θ i + 1 , θ i + 2 = η Z θ i , ϑ i , Z θ i + 1 , ϑ i + 1 ξ θ i , ϑ i 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ i , ϑ i 2 η θ i , Z θ i , ϑ i + η ϑ i , Z ϑ i , θ i η θ i + 1 , Z θ i + 1 , ϑ i + 1 + η ϑ i + 1 , Z ϑ i + 1 , θ i + 1 1 + η θ i , θ i + 1 + η ϑ i , ϑ i + 1 = ξ θ i , ϑ i 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ i , ϑ i 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 1 + η θ i , θ i + 1 + η ϑ i , ϑ i + 1 ξ θ i , ϑ i 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ i , ϑ i 2 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 = ξ Z θ i 1 , ϑ i 1 , Z ϑ i 1 , θ i 1 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ Z θ i 1 , ϑ i 1 , Z ϑ i 1 , θ i 1 2 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 .
It follows that
η θ i + 1 , θ i + 2 ξ θ i 1 , ϑ i 1 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ i 1 , ϑ i 1 2 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 = ξ Z θ i 2 , ϑ i 2 , Z ϑ i 2 , θ i 2 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ Z θ i 2 , ϑ i 2 , Z ϑ i 2 , θ i 2 2 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 ξ θ i 2 , ϑ i 2 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 2 + ϱ θ i 2 , ϑ i 2 2 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 ξ θ 0 , ϑ 0 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ 0 , ϑ 0 2 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 .
Similarly
η ϑ i + 1 , ϑ i + 2 = η Z ϑ i , θ i , Z ϑ i + 1 , θ i + 1 ξ ϑ i , θ i 2 η ϑ i , ϑ i + 1 + η θ i , θ i + 1 + ϱ ϑ i , θ i 2 η ϑ i , Z ϑ i , θ i + η θ i , Z θ i , ϑ i η ϑ i + 1 , Z ϑ i + 1 , θ i + 1 + η θ i + 1 , Z θ i + 1 , ϑ i + 1 1 + η θ i , θ i + 1 + η ϑ i , ϑ i + 1 = ξ θ i , ϑ i 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ i , ϑ i 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 1 + η θ i , θ i + 1 + η ϑ i , ϑ i + 1 ξ θ i 1 , ϑ i 1 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ i 1 , ϑ i 1 2 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 ξ θ i 2 , ϑ i 2 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ i 2 , ϑ i 2 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 ξ θ 0 , ϑ 0 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ 0 , ϑ 0 2 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 .
Combining (3) and (4), we have
η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 ξ θ 0 , ϑ 0 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + ϱ θ 0 , ϑ 0 η θ i + 1 , θ i + 2 + η ϑ i + 1 , ϑ i + 2 ,
which implies that
η θ i , θ i + 1 + η ϑ i , ϑ i + 1 ξ θ 0 , ϑ 0 1 ϱ θ 0 , ϑ 0 η θ i 1 , θ i + η ϑ i 1 , ϑ i = η θ i 1 , θ i + η ϑ i 1 , ϑ i 2 η θ i 2 , θ i + η ϑ i 1 , ϑ i i η θ 0 , θ 1 + η ϑ 0 , ϑ 1 .
For i , j N , ( i < j ) , we obtain
η θ i , θ j φ θ i , θ i + 1 η θ i , θ i + 1 + φ θ i + 1 , θ j η θ i + 1 , θ j φ θ i , θ i + 1 η θ i , θ i + 1 + φ θ i + 1 , θ j φ θ i + 1 , θ i + 2 η θ i + 1 , θ i + 2 + φ θ i + 1 , θ j φ θ i + 2 , θ j η θ i + 2 , θ j φ θ i , θ i + 1 η θ i , θ i + 1 + φ θ i + 1 , θ j φ θ i + 1 , θ i + 2 η θ i + 1 , θ i + 2 + φ θ i + 1 , θ j φ θ i + 2 , θ j φ θ i + 1 , θ i + 3 η θ i + 1 , θ i + 3 + φ θ i + 1 , θ j φ θ i + 2 , θ j φ θ i + 3 , θ j η θ i + 3 , θ j φ θ i , θ i + 1 η θ i , θ i + 1 + k = i + 1 j 2 u = i + 1 k φ θ u , θ j φ θ k , θ k + 1 η θ k , θ k + 1 + k = i + 1 j 1 φ θ k , θ j η θ j 1 , θ j ,
which yields that
η θ i , θ j φ θ i , θ i + 1 η θ i , θ i + 1 + k = i + 1 j 2 u = i + 1 k φ θ u , θ j φ θ k , θ k + 1 η θ k , θ k + 1 + k = i + 1 j 1 φ θ k , θ j φ θ j 1 , θ j η θ j 1 , θ j .
Analogously, one can obtain
η ϑ i , ϑ j φ ϑ i , ϑ i + 1 η ϑ i , ϑ i + 1 + k = i + 1 j 2 u = i + 1 k φ ϑ u , ϑ j φ ϑ k , ϑ k + 1 η ϑ k , ϑ k + 1 + k = i + 1 j 1 φ ϑ k , ϑ j φ ϑ j 1 , ϑ j η ϑ j 1 , ϑ j .
Adding (6) to (7) and using the assumption φ ϑ i , ϑ i + 1 φ θ i , θ i + 1 and (5), we obtain
η θ i , θ j + η ϑ i , ϑ j φ θ i , θ i + 1 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 + k = i + 1 j 2 u = i + 1 k φ θ u , θ j φ θ k , θ k + 1 η θ k , θ k + 1 + η ϑ k , ϑ k + 1 + k = i + 1 j 1 φ ϑ k , ϑ j φ ϑ j 1 , ϑ j η θ j 1 , θ j + η ϑ j 1 , ϑ j φ θ i , θ i + 1 i η θ 0 , θ 1 + η ϑ 0 , ϑ 1 + k = i + 1 j 2 u = i + 1 k φ θ u , θ j φ θ k , θ k + 1 k η θ 0 , θ 1 + η ϑ 0 , ϑ 1 + k = i + 1 j 1 φ ϑ k , ϑ j φ ϑ j 1 , ϑ j j 1 η θ 0 , θ 1 + η ϑ 0 , ϑ 1 = φ θ i , θ i + 1 i η θ 0 , θ 1 + η ϑ 0 , ϑ 1 + k = i + 1 j 1 u = i + 1 k φ θ u , θ j φ θ k , θ k + 1 k η θ 0 , θ 1 + η ϑ 0 , ϑ 1 .
Put
Θ g = k = 0 g u = 0 k φ θ u , θ j φ θ k , θ k + 1 k η θ 0 , θ 1 + η ϑ 0 , ϑ 1 .
Applying (9) in (8), one can write
η θ i , θ j + η ϑ i , ϑ j η θ 0 , θ 1 + η ϑ 0 , ϑ 1 i φ θ i , θ i + 1 + Θ j 1 Θ i .
Because φ θ , ϑ 1 and from the ratio test, we have that lim i Θ i exists. Thus, the sequence { Θ i } is a Cauchy sequence. Letting i , j in (10), we have
lim i , j η θ i , θ j + η ϑ i , ϑ j = 0 ,
which implies that lim i , j η θ i , θ j = lim i , j η ϑ i , ϑ j = 0 . Thus, there are θ * , ϑ * Ω so that
lim i η θ i , θ * = 0 and lim i η ϑ i , ϑ * = 0 .
Using postulates ( p 2 ) and ( p 3 ) , we obtain
η θ * , Z θ * , ϑ * φ θ * , θ i + 1 η θ * , θ i + 1 + φ θ i + 1 , Z θ * , ϑ * η θ i + 1 , Z θ * , ϑ * = φ θ * , θ i + 1 η θ * , θ i + 1 + φ θ i + 1 , Z θ * , ϑ * η Z θ i , ϑ i , Z θ * , ϑ * φ θ * , θ i + 1 η θ * , θ i + 1 + φ θ i + 1 , Z θ * , ϑ * ξ θ i , ϑ i 2 η θ i , θ * + η ϑ i , ϑ * + ϱ θ , ϑ 2 η θ i , Z θ i , ϑ i + η ϑ i , Z ϑ i , θ i η θ * , Z θ * , ϑ * + η ϑ * , Z ϑ * , θ * 1 + η θ i , θ * + η ϑ i , ϑ * = φ θ * , θ i + 1 η θ * , θ i + 1 + φ θ i + 1 , Z θ * , ϑ * ξ θ i , ϑ i 2 η θ i , θ * + η ϑ i , ϑ * + ϱ θ , ϑ 2 η θ i , θ i + 1 + η ϑ i , ϑ i + 1 η θ * , Z θ * , ϑ * + η ϑ * , Z ϑ * , θ * 1 + η θ i , θ * + η ϑ i , ϑ * .
Similarly, one can write
η ϑ * , Z ϑ * , θ * φ ϑ * , ϑ i + 1 η ϑ * , ϑ i + 1 + φ ϑ i + 1 , Z ϑ * , θ * ξ ϑ i , θ i 2 η ϑ i , ϑ * + η θ i , θ * + ϱ ϑ i , θ i 2 η ϑ i , ϑ i + 1 + η θ i , θ i + 1 η ϑ * , Z ϑ * , θ * + η θ * , Z θ * , ϑ * 1 + η θ i , θ * + η ϑ i , ϑ * .
η θ * , θ ^ = η Z θ * , ϑ * , Z θ ^ , ϑ ^ ξ θ * , ϑ * 2 η θ * , θ ^ + η ϑ * , ϑ ^ + ϱ θ * , ϑ * 2 η θ * , Z θ * , ϑ * + η ϑ * , Z ϑ * , θ * η θ ^ , Z θ ^ , ϑ ^ + η ϑ ^ , Z ϑ ^ , θ ^ 1 + η θ * , θ ^ + η ϑ * , ϑ ^ = ξ θ * , ϑ * 2 η θ * , θ ^ + η ϑ * , ϑ ^ .
In the same way, we can obtain
η ϑ * , ϑ ^ ξ ϑ * , θ * 2 η θ * , θ ^ + η ϑ * , ϑ ^ .
Combining (14) and (15), we have
η θ * , θ ^ + η ϑ * , ϑ ^ ξ ϑ * , θ * η θ * , θ ^ + η ϑ * , ϑ ^ .
Because ξ [ 0 , 1 ) , we conclude that η θ * , θ ^ + η ϑ * , ϑ ^ = 0 . This is only achieved if η θ * , θ ^ = 0 and η ϑ * , ϑ ^ = 0 . Hence, θ * = θ ^ and ϑ * = ϑ ^ . Therefore, there is a unique CFP of Z on Ω .
Now, we present some direct results for Theorem 4, as follows:
Putting ξ θ , ϑ = ξ and ϱ θ , ϑ = ϱ in Theorem 4, we obtain the result below
Corollary 1.
Let  Ω , φ , η  be a CCM-space and  Z : Ω × Ω Ω  be such that
η Z θ , ϑ , Z , υ ξ 2 η θ , + η ϑ , υ + ϱ 2 η θ , Z θ , ϑ + η ϑ , Z ϑ , θ η , Z , υ + η υ , Z υ , 1 + η θ , + η ϑ , υ ,
for all  θ , ϑ , , υ Ω .  For  θ 0 , ϑ 0 Ω ,  we put  ξ θ 0 , ϑ 0 1 ϱ θ 0 , ϑ 0 = .  Let  φ ϑ i , ϑ i + 1 φ θ i , θ i + 1  and
sup j 1 lim i φ θ i + 1 , θ i + 2 φ θ i + 1 , θ j φ θ i , θ i + 1 < 1 ,
where  θ i + 1 = Z θ i , ϑ i  for each  i 0  and  ξ + ϱ < 1 .  Furthermore, if for every  θ , ϑ Ω , lim i φ θ i , θ  and  lim i φ θ , θ i  exist and are finite, then the mapping Z has a unique CFP.
Setting ϱ . , . = 0 in Theorem 4, we have the following result.
Corollary 2.
Assume that  Ω , φ , η  is a CCM-space and  Z : Ω × Ω Ω .  Let  ξ : Ω × Ω [ 0 , 1 )  be such that
  • ξ Z θ , ϑ , Z , υ ξ θ , ϑ ;
  • η Z θ , ϑ , Z , υ ξ θ , ϑ 2 η θ , + η ϑ , υ  for all  θ , ϑ , , υ Ω  and for  θ 0 , ϑ 0 Ω ,  assume that
    sup j 1 lim i φ θ i + 1 , θ i + 2 φ θ i + 1 , θ j φ θ i , θ i + 1 < 1 ξ ( θ 0 , ϑ 0 ) ,
    where  θ i + 1 = Z θ i , ϑ i  for each  i 0 .  Additionally, assume that  lim i φ θ i , θ  and  lim i φ θ , θ i  exist and are finite for each  θ , ϑ Ω , then Z has a unique CFP.
Theorem 5.
Assume that  Ω , φ , η  is a CCM-space and  Z : Ω × Ω Ω .  If there are  ξ , ϱ : Ω × Ω [ 0 , 1 )  so that for  θ , ϑ , , υ Ω  and for some  k N , we have
(1)
ξ Z k θ , ϑ , Z k , υ ξ θ , ϑ  and  ϱ Z k θ , ϑ , Z k , υ ϱ θ , ϑ ;
(2)
ξ θ , = ξ , θ  and  ϱ θ , = ϱ , θ  with  ξ + ϱ θ , ϑ < 1 ;
(3)
η Z k θ , ϑ , Z k , υ ξ θ , ϑ 2 η θ , + η ϑ , υ + ϱ θ , ϑ 2 η θ , Z k θ , ϑ + η ϑ , Z k ϑ , θ η , Z k , υ + η υ , Z k υ , 1 + η θ , + η ϑ , υ .
For  θ 0 , ϑ 0 Ω ,  we set  ξ θ 0 , ϑ 0 1 ϱ θ 0 , ϑ 0 = .  Let  φ ϑ i , ϑ i + 1 φ θ i , θ i + 1  and
sup j 1 lim i φ θ i + 1 , θ i + 2 φ θ i + 1 , θ j φ θ i , θ i + 1 < 1 ,
where  θ i + 1 = Z θ i , ϑ i  for each  i 0 .  Further, if for every  θ , ϑ Ω , lim i φ θ i , θ  and  lim i φ θ , θ i  are exist and finite. Then, the mapping Z has a unique CFP.
Proof. 
Based on Theorem 4, we have Z k has a unique CFP θ * , ϑ * Ω × Ω . Because
Z k Z θ * , ϑ * , Z ϑ * , θ * = Z Z k θ * , ϑ * , Z k ϑ * , θ * = Z θ * , ϑ * ,
then Z θ * , ϑ * is a CFP of Z k . Hence, Z θ * , ϑ * = θ * and Z ϑ * , θ * = ϑ * . By the uniqueness of a CFP of Z k and because the CFP of Z is also CFP of Z k , then θ * , ϑ * is a unique CFP of Z .
The examples below support Theorem 4.
Example 2.
Consider  Ω = [ 0 , 1 ] .  Describe  η : Ω × Ω [ 0 , )  and  φ : Ω × Ω [ 1 , )  as
η θ , ϑ = θ + ϑ 2 and φ θ , ϑ = 1 + θ + ϑ , for all θ , ϑ Ω .
Clearly,  Ω , φ , η  is a CCM-space. Define the mapping  Z : Ω × Ω Ω  by  Z ( θ , ϑ ) = 5 θ + 4 ϑ 25 ,  for  θ , ϑ Ω .  Select  ξ , ϱ : Ω × Ω [ 0 , 1 )  by
ξ θ , ϑ = 25 + θ + ϑ 128 and ϱ θ , ϑ = 21 + θ + ϑ 128 .
Take  θ 0 , ϑ 0 = ( 0 , 0 ) ,  so the stipulation (2) is fulfilled. Consider  θ , ϑ , , υ Ω .  Then,
η Z θ , ϑ , Z , υ = 5 θ + 4 ϑ 16 + 5 + 4 υ 16 2 5 θ + 5 + 4 ϑ + 4 υ 2 256 = 5 θ + 5 2 + 4 ϑ + 4 υ 2 + 2 5 θ + 5 4 ϑ + 4 υ 256 5 θ + 5 2 + 5 ϑ + 5 υ 2 + 2 5 θ + 5 4 ϑ + 4 υ 256 25 + θ + ϑ 128 θ + 2 + ϑ + υ 2 2 + 5 θ + ϑ + υ 32 25 + θ + ϑ 128 θ + 2 + ϑ + υ 2 2 + 21 + θ + ϑ 128 . 21 θ + 4 ϑ 2 + 21 ϑ + 4 θ 2 21 + 4 υ 2 + 21 υ + 4 2 2 1 + θ + 2 + ϑ + υ 2 = 25 + θ + ϑ 128 θ + 2 + ϑ + υ 2 2 + 21 + θ + ϑ 2 × 128 θ + 5 θ + 4 ϑ 16 2 + ϑ + 5 ϑ + 4 θ 16 2 + 5 + 4 υ 16 2 + υ + 5 υ + 4 16 2 1 + θ + 2 + ϑ + υ 2 = ξ θ , ϑ 2 η θ , + η ϑ , υ + ϱ θ , ϑ 2 η θ , Z θ , ϑ + η ϑ , Z ϑ , θ η , Z , υ + η υ , Z υ , 1 + η θ , + η ϑ , υ .
Hence, all requirements of Theorem 4 are fulfilled. Therefore, Z has a unique CFP, which is  ( 0 , 0 ) .
Example 3.
Consider  Ω = { 0 , 1 , 2 } .  Describe  φ : Ω × Ω [ 1 , )  and  η : Ω × Ω [ 0 , )  as  φ θ , ϑ = 2 + θ ϑ ,  for all  θ , ϑ Ω  and
η ( 0 , 0 ) = η ( 1 , 1 ) = η ( 2 , 2 ) = 0 , η ( 0 , 1 ) = η ( 1 , 0 ) = 25 , η ( 0 , 2 ) = η ( 2 , 0 ) = 10 , η ( 1 , 2 ) = η ( 2 , 1 ) = 20 .
Obviously,  Ω , φ , η  is a CCM-space. Now, define  Z : Ω × Ω Ω ,  and  ξ , ϱ : Ω × Ω [ 0 , 1 )  by
Z 0 , 0 = Z 1 , 1 = Z ( 2 , 2 ) = 0 , Z 0 , 1 = Z 1 , 0 = 2 , Z 0 , 2 = Z 2 , 0 = 1 , Z 1 , 2 = Z 2 , 1 = 1 .
and
ξ ( 0 , 0 ) = ξ ( 1 , 1 ) = ξ ( 2 , 2 ) = 0 ξ 0 , 1 = ξ 1 , 0 = 8 17 ξ 0 , 2 = ξ 2 , 0 = 1 5 ξ 1 , 2 = ξ 2 , 1 = 1 7 ϱ ( 0 , 0 ) = ϱ ( 1 , 1 ) = ϱ ( 2 , 2 ) = 0 ϱ 0 , 1 = ϱ 1 , 0 = 1 2 ϱ 0 , 2 = ϱ 2 , 0 = 1 8 ϱ 1 , 2 = ϱ 2 , 1 = 1 9
To verify the condition (1), we consider the following cases:
  • If  θ , ϑ = , υ = ( 0 , 0 )  or  ( 1 , 1 )  or  ( 2 , 2 ) .  It is a trivial case.
  • If  θ , ϑ = , υ = ( 0 , 1 ) or ( 1 , 0 ) ,  ( 0 , 2 ) or ( 2 , 0 ) ,  and  ( 1 , 2 ) or ( 2 , 1 ) ,  we have  η Z θ , ϑ , Z , υ = 0 ,  and it is a trivial case too.
  • If  θ , ϑ = ( 0 , 1 ) and , υ = ( 0 , 2 )  or  θ , ϑ = ( 1 , 0 ) and , υ = ( 2 , 0 ) ,  we obtain
    η Z θ , ϑ , Z , υ = η Z 0 , 1 , Z 0 , 2 = η 2 , 1 = 20 < 20.77731092 = 8 17 × 2 20 + 1 2 × 2 30 × 45 1 + 20 = ξ 0 , 1 2 0 + 20 + ϱ 0 , 1 2 η 0 , 2 + η 1 , 2 η 0 , 1 + η 2 , 1 1 + η 0 , 0 + η 1 , 2 = ξ 0 , 1 2 η 0 , 0 + η 1 , 2 + ϱ 0 , 1 2 η 0 , Z 0 , 1 + η 1 , Z 1 , 0 η 0 , Z 0 , 2 + η 2 , Z 2 , 0 1 + η 0 , 0 + η 1 , 2 = ξ θ , ϑ 2 η θ , + η ϑ , υ + ϱ θ , ϑ 2 η θ , Z θ , ϑ + η ϑ , Z ϑ , θ η , Z , υ + η υ , Z υ , 1 + η θ , + η ϑ , υ .
  • If  θ , ϑ = ( 0 , 2 ) and , υ = ( 1 , 2 )  or  θ , ϑ = ( 2 , 0 ) and , υ = ( 2 , 1 ) ,  we have  η Z θ , ϑ , Z , υ = η 1 , 1 = 0 .  It is satisfied for any value of ξ and ϱ.
  • If  θ , ϑ = ( 1 , 2 ) and , υ = ( 0 , 2 )  or  θ , ϑ = ( 2 , 1 ) and , υ = ( 1 , 0 ) ,  we obtain  η Z θ , ϑ , Z , υ = η Z 1 , 2 , Z 0 , 2 = η 1 , 1 = 0 . It is fulfilled for any value of ξ and ϱ.
Moreover, in the above cases, we can find for each  θ , ϑ , , υ Ω  that  ξ Z θ , ϑ , Z , υ ξ θ , ϑ  and  ϱ Z θ , ϑ , Z , υ ϱ θ , ϑ  and  ξ + ϱ < 1 .  Hence, all requirements of Theorem 4 are fulfilled. Therefore, Z has a unique CFP, which is  ( 0 , 0 ) .

3. Fixed-Point Techniques on Graphs

Motivated by the results of Jachymski [26], assume that Ω , φ , η is a CCM-space, ∇ is diagonal of Ω × Ω , and = , ( ) is a directed graph (DG), where is the set of vertices that coincide with Ω and ( ) is the set of edges of the graph so that ( ) . Furthermore, if does not have any parallel edges, then can be identified by the pair , ( ) . In this essay, will be portrayed as a graph that satisfies the criteria listed above. Let us represent the graph that we obtained from by flipping the edges’ directions as 1 . Thus,
1 = ϑ , θ Ω × Ω : θ , ϑ ( ) .
Definition 4.
The set Ξ stands for the set of all CFPs of a nonlinear mapping  Z : Ω × Ω Ω ,  that is
Ξ = θ ^ , ϑ ^ Ω × Ω : θ ^ = Z θ ^ , ϑ ^ and ϑ ^ = Z ϑ ^ , θ ^ .
Definition 5.
Let  Z : Ω × Ω Ω  be self-mapping on a CCM-space  Ω , φ , η  endowed with a DG  .  We say that Z is  -orbital, if for any  θ , ϑ Ω ,  we have
θ , Z θ , ϑ , ϑ , Z ϑ , θ ( ) Z θ , ϑ , Z Z θ , ϑ , Z ϑ , θ , Z ϑ , θ , Z Z ϑ , θ , Z θ , ϑ ( ) .
For simplicity, we consider
Ω Z = θ , ϑ Ω × Ω : θ , Z θ , ϑ ( ) and ϑ , Z ϑ , θ ( ) .
Now, our first main result in this part is as follows:
Theorem 6.
Suppose that  Ω , φ , η  is a CCM-space endowed with a DG  .  Let  Z : Ω × Ω Ω  be a  -orbital mapping so that
(a) 
Ω Z ,
(b) 
for each  θ , ϑ , , υ Ω Z  and for  ζ 1 , ζ 2 , ζ 3 > 0  with  ζ 1 + ζ 2 + ζ 3 < 1 ,  we have
η Z θ , ϑ , Z , υ ζ 1 2 η θ , + η ϑ , υ + ζ 2 2 η θ , Z θ , ϑ + η ϑ , Z ϑ , θ + ζ 3 2 η , Z , υ + η υ , Z υ , ,
(c) 
for any sequences  { θ i } , { ϑ i } Ω  with  θ i , θ i + 1 , ϑ i , ϑ i + 1 ( ) , we obtain
sup j 1 lim i φ θ i + 1 , θ i + 2 φ θ i + 1 , θ j φ θ i , θ i + 1 < 1 ,
where  = max ζ 1 + ζ 2 1 ζ 3 , ζ 1 + ζ 3 1 ζ 2 ,
(d) 
Z is continuous, or for any sequences  { θ i } i N , { ϑ i } i N Ω  with  lim i θ i = θ ,  lim i ϑ i = ϑ  and  θ i , θ i + 1 , ϑ i , ϑ i + 1 ( ) ,  we have  Ξ ,  i.e., there is at least one CFP  θ ^ , ϑ ^ Ω × Ω  of  Z ,
(e) 
for every  θ , ϑ Ω ,  we have  lim i φ θ i , θ  and  lim i φ θ , θ i  exist and are finite,
(f) 
assume that  θ ^ , ϑ ^ Ξ  then, we have  θ ^ , ϑ ^ Ω Z  and Z has a unique CFP.
Proof. 
Let θ 0 , ϑ 0 Ω Z . Thus, θ 0 , Z θ 0 , ϑ 0 ( ) and ϑ 0 , Z ϑ 0 , θ 0 ( ) . Because Z is -orbital, we obtain
Z θ 0 , ϑ 0 , Z Z θ 0 , ϑ 0 , Z ϑ 0 , θ 0 ( ) and Z ϑ 0 , θ 0 , Z Z ϑ 0 , θ 0 , Z θ 0 , ϑ 0 ( ) .
Putting Z θ 0 , ϑ 0 = θ 1 and Z ϑ 0 , θ 0 = ϑ 1 , we have
θ 1 , Z θ 1 , ϑ 1 ( ) and ϑ 1 , Z ϑ 1 , θ 1 ( ) ,
which implies that
Z θ 1 , ϑ 1 , Z Z θ 1 , ϑ 1 , Z ϑ 1 , θ 1 ( ) and Z ϑ 1 , θ 1 , Z Z ϑ 1 , θ 1 , Z θ 1 , ϑ 1 ( ) .
Taking Z θ 1 , ϑ 1 = θ 2 and Z ϑ 1 , θ 1 = ϑ 2 , we obtain
θ 2 , Z θ 2 , ϑ 2 ( ) and ϑ 2 , Z ϑ 2 , θ 2 ( ) .
Continuing with the same approach, we construct sequences { θ i } i N and { ϑ i } i N in Ω by θ i + 1 = Z θ i , ϑ i and ϑ i + 1 = Z ϑ i , θ i so that θ i , θ i + 1 ( ) and ϑ i , ϑ i + 1 ( ) . Now, if there is i 0 N so that θ i 0 = θ i 0 + 1 and ϑ i 0 = ϑ i 0 + 1 . Because ( ) , then we obtain θ i 0 , θ i 0 + 1 ( ) and ϑ i 0 , ϑ i 0 + 1 ( ) and hence θ ^ = θ i 0 , ϑ ^ = ϑ i 0 is a CFP of Z.
In other words, if i 0 is even, then i 0 = 2 i , θ 2 i = θ 2 i + 1 = Z θ 2 i , ϑ 2 i and ϑ 2 i = ϑ 2 i + 1 = Z ϑ 2 i , θ 2 i . Let θ = θ 2 i Ω Z and ϑ = ϑ 2 i + 1 Ω Z , and using the condition ( b ) , we obtain
η θ 2 i + 1 , θ 2 i + 2 = η Z θ 2 i , ϑ 2 i , Z θ 2 i + 1 , ϑ 2 i + 1 ζ 1 2 η θ 2 i , θ 2 i + 1 + η ϑ 2 i , ϑ 2 i + 1 + ζ 2 2 η θ 2 i , Z θ 2 i , ϑ 2 i + η ϑ 2 i , Z ϑ 2 i , θ 2 i + ζ 3 2 η θ 2 i + 1 , Z θ 2 i + 1 , ϑ 2 i + 1 + η ϑ 2 i + 1 , Z ϑ 2 i + 1 , θ 2 i + 1 = ζ 3 2 η θ 2 i + 1 , θ 2 i + 2 + η ϑ 2 i + 1 , ϑ 2 i + 2 .
Similarly, one can write
η ϑ 2 i + 1 , ϑ 2 i + 2 = η Z ϑ 2 i , θ 2 i , Z ϑ 2 i + 1 , θ 2 i + 1 ζ 3 2 η θ 2 i + 1 , θ 2 i + 2 + η ϑ 2 i + 1 , ϑ 2 i + 2 .
Adding (16) and (17), we have
η θ 2 i + 1 , θ 2 i + 2 + η ϑ 2 i + 1 , ϑ 2 i + 2 ζ 1 η θ 2 i + 1 , θ 2 i + 2 + η ϑ 2 i + 1 , ϑ 2 i + 2 ,
which is a contradiction. Similarly, if we take i 0 is odd, then there exists an FP of Z. Thus, suppose θ i θ i + 1 and ϑ i ϑ i + 1 for i N .
Next, we claim that { θ i } and { ϑ i } are Cauchy sequences. In this regard, we realize the following two cases:
  • If θ = θ 2 i Ω Z and ϑ = ϑ 2 i + 1 Ω Z , then based on the condition ( b ) , we have
    η θ 2 i + 1 , θ 2 i + 2 = η Z θ 2 i , ϑ 2 i , Z θ 2 i + 1 , ϑ 2 i + 1 ζ 1 2 η θ 2 i , θ 2 i + 1 + η ϑ 2 i , ϑ 2 i + 1 + ζ 2 2 η θ 2 i , Z θ 2 i , ϑ 2 i + η ϑ 2 i , Z ϑ 2 i , θ 2 i + ζ 3 2 η θ 2 i + 1 , Z θ 2 i + 1 , ϑ 2 i + 1 + η ϑ 2 i + 1 , Z ϑ 2 i + 1 , θ 2 i + 1 = ζ 1 2 η θ 2 i , θ 2 i + 1 + η ϑ 2 i , ϑ 2 i + 1 + ζ 2 2 η θ 2 i , θ 2 i + 1 + η ϑ 2 i , ϑ 2 i + 1 + ζ 3 2 η θ 2 i + 1 , θ 2 i + 2 + η ϑ 2 i + 1 , ϑ 2 i + 2 .
    Similarly, one can obtain
    η ϑ 2 i + 1 , ϑ 2 i + 2 ζ 1 2 η ϑ 2 i , ϑ 2 i + 1 + η θ 2 i , θ 2 i + 1 + ζ 2 2 η ϑ 2 i , ϑ 2 i + 1 + η θ 2 i , θ 2 i + 1 + ζ 3 2 η ϑ 2 i + 1 , ϑ 2 i + 2 + η θ 2 i + 1 , θ 2 i + 2 .
    Combining (18) and (19), we can write
    η θ 2 i + 1 , θ 2 i + 2 + η ϑ 2 i + 1 , ϑ 2 i + 2 ζ 1 η θ 2 i , θ 2 i + 1 + η ϑ 2 i , ϑ 2 i + 1 + ζ 2 η θ 2 i , θ 2 i + 1 + η ϑ 2 i , ϑ 2 i + 1 + ζ 3 η θ 2 i + 1 , θ 2 i + 2 + η ϑ 2 i + 1 , ϑ 2 i + 2 ,
    that is,
    η θ 2 i + 1 , θ 2 i + 2 + η ϑ 2 i + 1 , ϑ 2 i + 2 ζ 1 + ζ 2 1 ζ 3 1 η θ 2 i , θ 2 i + 1 + η ϑ 2 i , ϑ 2 i + 1 .
  • If θ = θ 2 i Ω Z and ϑ = ϑ 2 i 1 Ω Z , then by the condition ( b ) , we obtain
    η θ 2 i + 1 , θ 2 i = η Z θ 2 i , ϑ 2 i , Z θ 2 i 1 , ϑ 2 i 1 ζ 1 2 η θ 2 i , θ 2 i 1 + η ϑ 2 i , ϑ 2 i 1 + ζ 2 2 η θ 2 i , Z θ 2 i , ϑ 2 i + η ϑ 2 i 1 , Z ϑ 2 i 1 , θ 2 i 1 + ζ 3 2 η θ 2 i 1 , Z θ 2 i 1 , ϑ 2 i 1 + η ϑ 2 i 1 , Z ϑ 2 i 1 , θ 2 i 1 = ζ 1 2 η θ 2 i , θ 2 i 1 + η ϑ 2 i , ϑ 2 i 1 + ζ 2 2 η θ 2 i , θ 2 i + 1 + η ϑ 2 i 1 , ϑ 2 i + ζ 3 2 η θ 2 i 1 , θ 2 i + η ϑ 2 i 1 , ϑ 2 i .
Obviously, we can obtain
η ϑ 2 i + 1 , ϑ 2 i + 2 ζ 1 2 η ϑ 2 i , ϑ 2 i 1 + η θ 2 i , θ 2 i 1 + ζ 2 2 η ϑ 2 i , ϑ 2 i + 1 + η θ 2 i 1 , θ 2 i + ζ 3 2 η ϑ 2 i 1 , ϑ 2 i + η θ 2 i 1 , θ 2 i .
Adding (21) and (22), one can write
η θ 2 i + 1 , θ 2 i + η ϑ 2 i + 1 , ϑ 2 i ζ 1 η θ 2 i , θ 2 i 1 + η ϑ 2 i , ϑ 2 i 1 + ζ 2 η θ 2 i , θ 2 i + 1 + η ϑ 2 i 1 , ϑ 2 i + ζ 3 η θ 2 i 1 , θ 2 i + η ϑ 2 i 1 , ϑ 2 i ,
that is,
η θ 2 i + 1 , θ 2 i + η ϑ 2 i + 1 , ϑ 2 i ζ 1 + ζ 3 1 ζ 2 η θ 2 i , θ 2 i 1 + η ϑ 2 i , ϑ 2 i 1 .
It follows from (20), (23), and = max ζ 1 + ζ 2 1 ζ 3 , ζ 1 + ζ 3 1 ζ 2 that
η θ i , θ i + 1 + η ϑ i , ϑ i + 1 η θ i 1 , θ i + η ϑ i 1 , ϑ i .
Hence, we have
η θ i , θ i + 1 + η ϑ i , ϑ i + 1 η θ i 1 , θ i + η ϑ i 1 , ϑ i 2 η θ i 2 , θ i + η ϑ i 1 , ϑ i i η θ 0 , θ 1 + η ϑ 0 , ϑ 1 .
In the same manner as in the proof of Theorem 4, we can find that { θ i } and { ϑ i } are Cauchy sequences. Thus, there are θ * , ϑ * Ω such that
lim i η θ i , θ * = 0 and lim i η ϑ i , ϑ * = 0 .
Clearly
lim i θ 2 i = lim i θ 2 i + 1 = θ * and lim i ϑ 2 i = lim i ϑ 2 i + 1 = ϑ * .
Now, the continuity of Z leads to
θ * = lim i θ 2 i + 1 = lim i Z θ 2 i , ϑ 2 i = Z θ * , ϑ * , ϑ * = lim i ϑ 2 i + 1 = lim i Z ϑ 2 i , θ 2 i = Z ϑ * , θ * .
Hence, ( θ * , ϑ * ) is a CFP of Z. Therefore, Ξ . Otherwise, let θ = θ * Ω Z and ϑ = ϑ 2 i + 2 Ω Z , then we obtain
0 < η Z θ * , ϑ * , θ 2 i + 2 = η Z θ * , ϑ * , Z θ 2 i + 1 , ϑ 2 i + 1 ζ 1 2 η θ * , θ 2 i + 1 + η ϑ * , ϑ 2 i + 1 + ζ 2 2 η θ * , Z θ * , ϑ * + η ϑ * , Z ϑ * , θ * + ζ 3 2 η θ 2 i + 1 , Z θ 2 i + 1 , ϑ 2 i + 1 + η ϑ 2 i + 1 , Z ϑ 2 i + 1 , θ 2 i + 1 = ζ 1 2 η θ * , θ 2 i + 1 + η ϑ * , ϑ 2 i + 1 + ζ 2 2 η θ * , Z θ * , ϑ * + η ϑ * , Z ϑ * , θ * + ζ 3 2 η θ 2 i + 1 , θ 2 i + 2 + η ϑ 2 i + 1 , ϑ 2 i + 2 .
Letting i , we conclude that
η Z θ * , ϑ * , θ * ζ 2 2 η θ * , Z θ * , ϑ * + η ϑ * , Z ϑ * , θ *
Similarly, if we take θ = θ 2 i + 1 Ω Z and ϑ = ϑ * Ω Z , one can obtain
η ϑ * , Z ϑ * , θ * ζ 2 2 η ϑ * , Z ϑ * , θ * + η θ * , Z θ * , ϑ *
Combining (25) and (26), we have
η Z θ * , ϑ * , θ * + η ϑ * , Z ϑ * , θ * ζ 2 η θ * , Z θ * , ϑ * + η ϑ * , Z ϑ * , θ * .
Because ζ 2 < 1 , then the above inequality holds only if η Z θ * , ϑ * , θ * = 0 and η ϑ * , Z ϑ * , θ * = 0 , which implies that Z θ * , ϑ * = θ * and ϑ * = Z ϑ * , θ * . The uniqueness follows immediately from the stipulation ( f ) and this finishes the proof. □
The following example supports Theorem 6.
Example 4.
Consider  Ω = { 0 , 1 , 2 , 3 , 4 }  equipped with the distance  η θ , ϑ = θ ϑ 2  and the function  φ θ , ϑ = 1 + θ ϑ ,  for all  θ , ϑ Ω .  Obviously,  Ω , φ , η  is a CCM-space. Define the mapping  Z : Ω × Ω Ω  by
Z ( θ , ϑ ) = 0 , If θ , ϑ { 0 , 1 , 2 } , 1 , If θ , ϑ { 3 , 4 } .
Describe a DG as  = { ( 0 , 0 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 3 , 3 ) , ( 4 , 4 ) , ( 0 , 1 ) , ( 0 , 2 ) , ( 1 , 2 ) , ( 0 , 3 ) , ( 3 , 4 ) } .  Then, with  ζ 1 = 1 18 , ζ 2 = 1 4  and  ζ 3 = 3 52 , all requirements of Theorem 6 are satisfied and  ( 0 , 0 )  is a unique CFP.

4. Applications

In this part, we apply the theoretical results presented in Theorem 4 to discuss the existence of the solution to the following integral equations:
θ ν = ( ν ) + 0 1 1 ( ν , τ , θ τ , ϑ τ ) d τ , ϑ ν = ( ν ) + 0 1 2 ( ν , τ , ϑ τ , θ τ ) d τ ,
where τ [ 0 , 1 ] , θ , ϑ , Ω and k : [ 0 , 1 ] × [ 0 , 1 ] × Ω 2 Ω , k = 1 , 2 are continuous functions. Assume that Ω = C ( [ 0 , 1 ] ) equipped with η θ , ϑ = max ν [ 0 , 1 ] θ ( ν ) ϑ ( ν ) 2 . Then, Ω , φ , η is a CCM-space.
Now, we present our hypotheses to obtain the solution of the problem (27) in the theorem below.
Theorem 7.
Via the system (27), describe the functions  ψ θ ( ν ) , ψ ϑ ( ν ) Ω  as
ψ θ ( ν ) = 0 1 1 ( ν , τ , θ τ , ϑ τ ) d τ , ψ ϑ ( ν ) = 0 1 2 ( ν , τ , ϑ τ , θ τ ) d τ ,
for each  θ , ϑ Ω  and for  ν [ 0 , 1 ] .  If there are  ξ , ϱ : Ω × Ω [ 0 , 1 )  so that the following assertions are true:
(1) 
ξ ψ θ ( ν ) + ( ν ) , ψ ϑ ( ν ) + ( ν ) ξ θ , ϑ  and  ϱ ψ θ ( ν ) + ( ν ) , ψ ϑ ( ν ) + ( ν ) ϱ θ , ϑ ;
(2) 
ξ θ , = ξ , θ  and  ϱ θ , = ϱ , θ  with  ξ + ϱ θ , ϑ < 1 ;
(3) 
ψ θ ( ν ) ψ ( ν ) 2 ξ θ , ϑ 2 W 1 θ , ϑ , , υ ( ν ) + ϱ θ , ϑ 2 W 2 θ , ϑ , , υ ( ν ) ,
for all  θ , ϑ , , υ Ω ,  where
W 1 θ , ϑ , , υ ( ν ) = θ ( ν ) ( ν ) 2 + ϑ ( ν ) υ ( ν ) 2 ,
and
W 2 θ , ϑ , , υ ( ν ) = ψ θ ( ν ) + ( ν ) θ ( ν ) 2 + ψ ϑ ( ν ) + ( ν ) ϑ ( ν ) 2 × ψ ( ν ) + ( ν ) ( ν ) 2 + ϕ υ ( ν ) + ( ν ) υ ( ν ) 2 1 + θ ( ν ) ( ν ) 2 + ϑ ( ν ) υ ( ν ) 2 .
Then, there exists a unique solution to the considered problem (27).
Proof. 
Define the mapping Z : Ω × Ω Ω by
Z θ , ϑ = ψ θ ( ν ) + ( ν ) .
Then
η Z θ , ϑ , Z , υ = max ν [ 0 , 1 ] ψ θ ( ν ) ψ ( ν ) 2 , η θ , Z θ , ϑ + η ϑ , Z ϑ , θ = max ν [ 0 , 1 ] ψ θ ( ν ) + ( ν ) θ ( ν ) 2 + ψ ϑ ( ν ) + ( ν ) ϑ ( ν ) 2 , η , Z , υ + η υ , Z υ , = max ν [ 0 , 1 ] ψ ( ν ) + ( ν ) ( ν ) 2 + ϕ υ ( ν ) + ( ν ) υ ( ν ) 2 .
By simple calculations, one can verify that
  • ξ Z θ , ϑ , Z , υ ξ θ , ϑ and ϱ Z θ , ϑ , Z , υ ϱ θ , ϑ ;
  • ξ θ , = ξ , θ and ϱ θ , = ϱ , θ with ξ + ϱ θ , ϑ < 1 ;
  • η Z θ , ϑ , Z , υ ξ θ , ϑ 2 η θ , + η ϑ , υ +
    ϱ θ , ϑ 2 η θ , Z θ , ϑ + η ϑ , Z ϑ , θ η , Z , υ + η υ , Z υ , 1 + η θ , + η ϑ , υ ,
    for all θ , ϑ , , υ Ω .
Based on Theorem 4, Z has a unique CFP, which is a unique solution to the proposed system (27). □
Example 5.
Under the same distance in this section, suppose that  Ω , φ , η  is a CCM-space and consider the following coupled problem:
θ ( ν ) = e ν + 0 1 θ τ ϑ τ 6 + θ τ ϑ τ d τ , ϑ ( ν ) = e ν + 0 1 ϑ τ θ τ 6 + ϑ τ θ τ d τ ,
where  τ [ 0 , 1 ]  and  θ , ϑ Ω .  It is clear that  ( ν ) = e ν  and
ψ θ ( ν ) = 0 1 θ τ ϑ τ 6 + θ τ ϑ τ d τ , ψ ϑ ( ν ) = 0 1 ϑ τ θ τ 6 + ϑ τ θ τ d τ .
Now, define the control functions  ξ , ϱ : Ω × Ω [ 0 , 1 )  by  ξ ( θ , ϑ ) = 1 3 θ + ϑ  and  ϱ ( θ , ϑ ) = 1 3 + θ + ϑ ,  and then for all  θ , ϑ , , υ Ω ,  we have
(1) 
ξ ψ θ ( ν ) + ( ν ) , ψ ϑ ( ν ) + ( ν ) = 1 3 ψ θ ( ν ) + ( ν ) + ψ ϑ ( ν ) + ( ν ) = 1 3 θ ( ν ) + ϑ ( ν ) = ξ ( θ , ϑ ) ,  and  ϱ ψ θ ( ν ) + ( ν ) , ψ ϑ ( ν ) + ( ν ) = 1 3 + ψ θ ( ν ) + ( ν ) + ψ ϑ ( ν ) + ( ν ) = 1 3 + θ ( ν ) + ϑ ( ν ) = ϱ ( θ , ϑ ) ,
(2) 
clearly,  ξ θ , = 1 3 θ + = 1 3 + θ = ξ , θ  and  ϱ θ , = 1 3 + θ + = 1 3 + + θ = ϱ , θ  with  ξ + ϱ θ , ϑ = 6 9 θ + ϑ 2 < 1 .
(3) 
ψ θ ( ν ) ψ ( ν ) 2 = θ τ ϑ τ 6 + θ τ ϑ τ τ υ τ 6 + τ υ τ 2 1 6 θ τ τ + ϑ τ υ τ 2 1 2 1 3 θ + ϑ θ τ τ 2 + ϑ τ υ τ 2 = ξ θ , ϑ 2 W 1 θ , ϑ , , υ ( ν ) ξ θ , ϑ 2 W 1 θ , ϑ , , υ ( ν ) + ϱ θ , ϑ 2 W 2 θ , ϑ , , υ ( ν ) ,
where  W 1  and  W 2  are defined in Theorem 7. Hence, all requirements of Theorem 7 are satisfied. Therefore, the coupled problem (28) has a unique solution in  Ω .

5. Conclusions and Future Works

The fixed-point technique has become a prominent role in nonlinear analysis, especially when it has been demonstrated on perfect metric distances, where it enters into many diverse and exciting applications in several directions. Many researchers turned to different methods of generalization, either by changing the contractive condition or by generalizing the space used. By applying two control functions to the right-hand side of the inequality, we constructed a new contractive condition in a controlled metric space. Additionally, we used a specific rational expression for the contractive condition. Moreover, we have taken coupled self-mapping instead of the usual self-mapping in the contractive condition of our main results. Moreover, to demonstrate the veracity of our main findings, some examples are provided. Furthermore, in controlled metric spaces equipped with a graph, we were able to derive certain CFP solutions. Ultimately, as an application of our study, the existence of the solution to the integral equations is investigated. Our upcoming work in this field will concentrate on investigating the CFPs of multivalued and fuzzy mappings in controlled metric spaces, with applications to fractional differential inclusion problems.

Author Contributions

Writing—original draft, H.A.H.; Writing—review & editing, M.Z.; Funding acquisition, M.Z. All authors contributed equally and significantly in writing this article. All authors have read and agreed to the published version of the manuscript.

Funding

This work is funded through the research groups program under grant R.G.P.2/207/43 provided by the Deanship of Scientific Research at King Khalid University, Saudi Arabia.

Institutional Review Board Statement

Not Applicable.

Informed Consent Statement

Not Applicable.

Data Availability Statement

No data are associated with this study.

Acknowledgments

The authors thank the anonymous referees for their constructive reviews that greatly improved the paper. M. Zayed appreciates the support by the Deanship of Scientific Research at King Khalid University, Saudi Arabia through research groups program under grant R.G.P.2/207/43.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Fredholm, E.I. Sur une classe d’equations fonctionnelles. Acta Math. 1903, 27, 365–390. [Google Scholar] [CrossRef]
  2. Rus, M.D. A note on the existence of positive solution of Fredholm integral equations. Fixed Point Theory 2004, 5, 369–377. [Google Scholar]
  3. Berenguer, M.I.; Munoz, M.V.F.; Guillem, A.I.G.; Galan, M.R. Numerical treatment of fixed-point applied to the nonlinear Fredholm integral equation. Fixed Point Theory Appl. 2009, 2009, 735638. [Google Scholar] [CrossRef]
  4. Hammad, H.A.; De la Sen, M. Tripled fixed point techniques for solving system of tripled-fractional differential equations. AIMS Math. 2021, 6, 2330–2343. [Google Scholar] [CrossRef]
  5. Hammad, H.A.; Aydi, H.; De la Sen, M. Solutions of fractional differential type equations by fixed point techniques for multivalued contractions. Complexity 2021, 2021, 5730853. [Google Scholar] [CrossRef]
  6. Czerwik, S. Contraction mappings in b—metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
  7. Kamran, T.; Samreen, M.; Ain, Q.U. A generalization of b —metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef]
  8. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
  9. Lateef, D. Kannan fixed point theorem in c—metric spaces. J. Math. Anal. 2019, 10, 34–40. [Google Scholar]
  10. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
  11. Hammad, H.A.; De la Sen, M.; Aydi, H. Analytical solution for differential and nonlinear integral equations via Fϖe-Suzuki contractions in modified ϖe-metric-like spaces. J. Funct. Spaces 2021, 2021, 6128586. [Google Scholar]
  12. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef]
  13. Lateef, D. Fisher type fixed point results in controlled metric spaces. J. Math. Comput. Sci. 2020, 20, 234–240. [Google Scholar] [CrossRef]
  14. Shoaib, A.; Kumam, P.; Alshoraify, S.S.; Arshad, M. Fixed point results in double controlled quasi metric type spaces. AIMS Math. 2021, 6, 1851–1864. [Google Scholar] [CrossRef]
  15. Sezen, M.S. Controlled fuzzy metric spaces and some related fixed point results. Numer. Methods Partial. Differ. Equ. 2021, 37, 583–593. [Google Scholar] [CrossRef]
  16. Tasneem, S.; Gopalani, K.; Abdeljawad, T. A different approach to fixed point theorems on triple controlled metric type spaces with a numerical experiment. Dyn. Syst. Appl. 2021, 30, 111–130. [Google Scholar]
  17. Hammad, H.A.; Agarwal, P.; Guirao, L.G.J. Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces. Mathematics 2021, 9, 2012. [Google Scholar] [CrossRef]
  18. Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. Theory Methods Appl. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
  19. Abbas, M.; Khan, M.A.; Radenović, S. Common coupled fixed point theorems in cone metric spaces for w-compatible mapping. Appl. Math. Comput. 2010, 217, 195–202. [Google Scholar] [CrossRef]
  20. Lakshmikantham, V.; Cirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70, 4341–4349. [Google Scholar] [CrossRef]
  21. Radenović, S. Some coupled coincidence points results of monotone mappings in partially ordered metric spaces. Int. J. Anal. Appl. 2014, 5, 174–184. [Google Scholar]
  22. Sgroi, M.; Vetro, C. Multivalued F-contractions and the solution of certain functional and integral equations. Filomat 2013, 27, 1259–1268. [Google Scholar] [CrossRef]
  23. Chifu, C.; Petruşel, G. Coupled fixed point results for (φ,G)-contractions of type (b) in b—metric spaces endowed with a graph. J. Nonlinear Sci. Appl. 2017, 10, 671–683. [Google Scholar] [CrossRef]
  24. Shatanawi, W.; Samet, B.; Abbas, M. Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Model. 2012, 55, 680–687. [Google Scholar] [CrossRef]
  25. Rashwan R., A.; Hammad H., A.; Mahmoud, M.G. Common fixed point results for weakly compatible mappings under implicit relations in complex valued g—metric spaces. Inf. Sci. Lett. 2019, 8, 111–119. [Google Scholar]
  26. Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Hammad, H.A.; Zayed, M. New Generalized Contractions by Employing Two Control Functions and Coupled Fixed-Point Theorems with Applications. Mathematics 2022, 10, 3208. https://doi.org/10.3390/math10173208

AMA Style

Hammad HA, Zayed M. New Generalized Contractions by Employing Two Control Functions and Coupled Fixed-Point Theorems with Applications. Mathematics. 2022; 10(17):3208. https://doi.org/10.3390/math10173208

Chicago/Turabian Style

Hammad, Hasanen A., and Mohra Zayed. 2022. "New Generalized Contractions by Employing Two Control Functions and Coupled Fixed-Point Theorems with Applications" Mathematics 10, no. 17: 3208. https://doi.org/10.3390/math10173208

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop