Next Article in Journal
Soliton-Type Equations on a Riemannian Manifold
Next Article in Special Issue
Finite Gradient Models with Enriched RBF-Based Interpolation
Previous Article in Journal
Research on the Resilient Evolutionary Game of Logistics Service Supply Chain with Government Participation
Previous Article in Special Issue
Temporal Artificial Stress Diffusion for Numerical Simulations of Oldroyd-B Fluid Flow
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Liouville-Type Results for a Two-Dimensional Stretching Eyring–Powell Fluid Flowing along the z-Axis

1
Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain
2
Department of Mathematics, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(4), 631; https://doi.org/10.3390/math10040631
Submission received: 15 December 2021 / Revised: 15 February 2022 / Accepted: 15 February 2022 / Published: 18 February 2022
(This article belongs to the Special Issue Mathematical Dynamic Flow Models)

Abstract

:
The purpose of this study is to establish Liouville-type results for a three-dimensional incompressible, unsteady flow described by the Eyring–Powell fluid equations. The fluid is studied in a plane Ω p while it moves along the z-axis. Therefore the main functions to analyze are given by u ( x , y , z , t ) and v ( x , y , z , t ) , belonging to Ω p . The results are obtained for globally bounded initial data as well as their corresponding derivatives, and the variations in velocity along the z-axis belong to the space L 2 and B M O . Under such conditions, Liouville-type results are obtained and extended to L p ,   p > 2 .

1. Introduction

In many situations, the fluid principles typically considered to model substances such as water, air or oil are supported by the Newtonian fluid concept. Nonetheless, in certain applications, a non-Newtonian description is required to further characterize the prescribed behavior. As an example, the mathematical modeling of muds and sludges in mines can be described by non-Newtonian fluid approaches. In addition, there exist other applications, such as biomedical flows or lubrication, where non-Newtonian fluids constitute the baseline modeling. The particular rheological properties of non-Newtonian flows lead, in some cases, to the categorization of such fluids through the use of dedicated theories. This is the case of the so-called Eyring–Powell fluid. Numerous studies have been conducted for this particular fluid under flowing conditions (see [1,2,3,4,5,6,7,8,9,10] for some dedicated articles). More particularly, the Eyring–Powell fluid has been considered in this area in some recent studies. In [11], the authors propose a computational procedure based on a shooting method approach to obtain solutions in a three-dimensional Eyring–Powell fluid over a stretching sheet. In [12], an Eyring–Powell fluid is considered to act over an exponentially stretching surface where heat and mass transfer processes are modeled by nanoparticles. Additional studies devoted to exploring solutions under analytical and numerical exercises exist; nonetheless, little has been explored in relation to the regularity of solutions of three-dimensional Eyring–Powell fluids.
In relation to Liouville-type results, it shall be noted that there exists an extensive literature devoted to developing regularity criteria for Navier–Stokes equations and, more particularly, devoted to Liouville-type results for the 3D stationary fluid described by Navier–Stokes equations. As an example of this, refer to the Magnetohydrodynamics (MHD) and Hall-MHD equations treated in [13,14,15,16,17,18]. On the contrary, some further literature is required to explore the Liouville-type results for a 3D Eyring–Powell fluid, particularly when flowing along the z-axis while stretching on a plane.
Motivated by the described facts, the objective of the presented analysis is to establish Liouville-type results for an Eyring–Powell fluid over a plane with stretching velocities and flowing along the positive z-axis.
The fluid under analysis is considered to be incompressible and electrically conductive in the presence of an applied magnetic field B 0 . Consider the classical Cartesian coordinate system such that the Ω p plane corresponds to a fluid sheet and the flow invades the space z 0 . The surface stretching velocities along the x and y directions are u z = 0 x = a x and v z = 0 y = a y , respectively. Note that the idea is to study the fluid kinematics and the associated Liouville results in the Ω p plane through the fluid motion along the z-axis; therefore, the main functions to analyze are given by u ( x , y , z , t ) and v ( x , y , z , t ) . The velocity components, continuity principles and the governing equations of an Eyring–Powell fluid along the spatial domain Ω = Ω p × 0 , are
V = u x , y , z , t , v x , y , z , t , w x , y , z , t and u x + v y + w z = 0 ,
u t + u u x + v u y + w u z = ν + 1 β d 1 ρ f 2 u z 2 1 2 β d 1 3 ρ f u z 2 2 u z 2 σ B 0 2 ρ f u ,
v t + u v x + v v y + w v z = ν + 1 β d 1 ρ f 2 v z 2 1 2 β d 1 3 ρ f v z 2 2 v z 2 σ B 0 2 ρ f v .
The boundary conditions reflect the existence of stretching velocity fields in the plane z = 0 . In addition, it is assumed that the fluid is at rest for any dimensional variable at .
u = a x , v = a y , w = 0 f o r Ω p z = 0 , u 0 , v 0 as z , u = 0 , v = 0 , w = 0 if x , y , , u = 0 , v = 0 , w = 0 if x , y , .
In addition, we use the following initial conditions:
u x , y , z , 0 = u 0 x , y , z and v x , y , z , 0 = v 0 x , y , z ,
where u , v , w are the first, second and third components of the velocity, respectively, while ν is the kinematic viscosity (defined as the ratio of the dynamic viscosity μ and the fluid density ρ f ). Note that β and d 1 are two fluid parameters and σ is related to the charge distributions along the fluid.
Here, we assume that the shear stress is zero at z = 0 considering the case u z = v z = 0 . Additionally, u = v 0 for t .

2. Preliminaries

In this section, we introduce some notation and collect some preliminary results required to support the introduced analysis. Firstly, the usual Lebesgue space of real-valued functions is L p ( Q ) , Q = Ω × ( 0 , ) with the norm · L p .
f L p = Q f x p d x 1 p , 1 p < e s s sup x Q | f ( x ) | , p = . .
In addition, consider the Bounded Mean Oscillation (BMO) homogeneous space in B r = { ( x , y , z , t ) R 3 × [ 0 , ) ; ( x 2 + y 2 + z 2 ) 1 / 2 < r , t < r } with the following norm (see [19]).
g B M O = s u p r > 0 1 B r ( x ) B r ( x ) g ( y ) 1 B r ( y ) B r ( y ) g ( z ) d y .
Now, the following lemma is supported by a result in reference [20].
Lemma 1.
Let 1 < b < a < . Then,
u 1 L a u 1 B M O 1 b a u 1 L b b a .
The following lemma is required as well to support the analysis to come and is based on the anisotropic inequality for Sobolev spaces.
Lemma 2.
Let f ,   g ,   h C c R 3
Ω f g h d x d y d z C ¯ f L q α 1 α f x L s 1 α g L 2 α 2 α g y L 2 1 α h L 2 ,
where α > 2 , 1 q , s < , α 1 q + 1 s = 1 , and C ¯ is constant.
Now, consider the following definition of a cut-off function:
Definition 1.
Let B R x , t R 3 × 0 , T ; x i < r , t < r , 0 < r < R , and let ϕ C 0 R 3 be a cut-off function such that ϕ = 1 in B 1 and ϕ = 0 outside B 2 . Consider, then, the following function:
ϕ R x , t = ϕ x 1 R , x 2 R , x 3 R , t R ,
satisfying
k ϕ R L C R k a n d k ϕ R t k L C R k .

3. Statements of Results

In this paper, we established the Liouville-type results for three-dimensional Erying–Powell fluid flow equations and show that the solutions are bounded. This baseline idea is inspired by the work of Zhouyn Li and Penchen Niu in [21]. They established the Liouville-type theorems for the stationary Hall-MHD equations in R 3 . The results are stated as follows:
Theorem 1.
Consider the following bounds:
Ω u 0 x , y , z 2 d x d y d z < and Ω v 0 x , y , z 2 d x d y d z < .
In addition, consider u z , v z L 2 0 , , B M O .
Then, for R , the solutions u x , y , z , t and v x , y , z , t are bounded under same norm as u 0 , v 0 on Ω × 0 , .
Theorem 2.
Consider the following bounds:
Ω 2 u 0 x , y , z z 2 2 d x d y d z < and Ω 2 v 0 x , y , z z 2 2 d x d y d z < .
In addition, consider u z , v z , 2 u z 2 , 2 v z 2 L 2 0 , , B M O .
Then, as R , the solutions u x , y , z , t and v x , y , z , t are bounded under same norm as u 0 , v 0 on Ω × 0 , .
Theorem 3.
Consider the following bounds
Ω u 0 x , y , z p d x d y d z < and Ω v 0 x , y , z p d x d y d z < .
In addition, consider u z , v z L 2 0 , , B M O .
Then, for R , the solutions u x , y , z , t and v x , y , t are bounded on Ω × 0 , , considering the L p , p > 2 norm.
Proof of Theorem 1. 
First, multiply expression (2) by ( u ϕ R ) . Afterwards, consider the integration of the second term with respect to x, the integration of the third term with respect to y and the fourth and onward terms with respect to z:
B 2 R u t u ϕ R d x d y d z d t 1 3 B 2 R B R u 3 ϕ R x d x d y d z d t 1 2 B 2 R B R v y ϕ R u 2 d x d y d z d t
1 2 B 2 R B R ϕ R y v u 2 d x d y d z d t 1 2 B 2 R B R w z ϕ R u 2 d x d y d z d t 1 2 B 2 R B R ϕ R z w u 2 d x d y d z d t
= ν + 1 β d 1 ρ f B 2 R B R u u z ϕ R z d x d y d z d t B 2 R B R ϕ R u z 2 d x d y d z d t
1 2 β d 1 3 ρ f I 1 σ B 0 2 ρ f B 2 R u 2 ϕ R d x d y d z d t .
where
I 1 = B 2 R u z 2 2 u z 2 u ϕ R d x d y d z d t .
Integrating I 1 , we obtain
I 1 = 1 3 B 2 R B R z u ϕ R u z 3 d x d y d z d t = 1 3 B 2 R B R ϕ R u z 4 d x d y d z d t 1 3 B 2 R B R u u z 3 ϕ R z d x d y d z d t .
Now consider the third and fifth terms of (5)
1 2 B 2 R B R v y ϕ R u 2 d x d y d z d t 1 2 B 2 R B R w z ϕ R u 2 d x d y d z d t = 1 2 B 2 R B R ϕ R u 2 v y + w z d x d y d z d t = 1 2 B 2 R B R ϕ R u 2 u x d x d y d z d t ,
where we have used expression (1). After integration on the right-hand side, we obtain
1 2 B 2 R B R v y ϕ R u 2 d x d y d z d t 1 2 B 2 R B R w z ϕ R u 2 d x d y d z d t = 1 6 u 3 ϕ R B 2 R B R 1 6 B 2 R B R u 3 ϕ R x d x d y d z d t .
As r > > 1 , it is possible to state that u 3 ϕ R = 0 over B 2 R B R . Then, the following holds:
1 2 B 2 R B R v y ϕ R u 2 d x d y d z d t 1 2 B 2 R B R w z ϕ R u 2 d x d y d z d t = 1 6 B 2 R B R u 3 ϕ R x d x d y d z d t .
Utilizing the values of these integrals and I 1 in (5), we have
B 2 R u t u ϕ R d x d y d z d t 1 6 B 2 R B R ϕ R x u 3 d x d y d z d t
1 2 B 2 R B R ϕ y v u 2 d x d y d z d t 1 2 B 2 R B R ϕ z w u 2 d x d y d z d t
= ν + 1 β d 1 ρ f B 2 R B R ϕ z u u z d x d y d z d t B 2 R B R ϕ R u z 2 d x d y d z d t
1 2 β d 1 3 ρ f 1 3 B 2 R B R ϕ R u z 4 d x d y d z d t 1 3 B 2 R B R ϕ z u u z 3 d x d y d z d t σ B 0 2 ρ f B 2 R u 2 ϕ R d x d y d z d t ,
which implies that
B 2 R u t u ϕ R d x d y d z d t = 1 6 B 2 R B R ϕ x u 3 d x d y d z d t ν + 1 β d 1 ρ f B 2 R B R ϕ R u z 2 d x d y d z d t
+ 1 6 β d 1 3 ρ f B 2 R B R ϕ R u z 4 d x d y d z d t + 1 2 ν + 1 β d 1 ρ f B 2 R B R u 2 2 ϕ z 2 d x d y d z d t
+ 1 6 β d 1 3 ρ f B 2 R B R u u z 3 ϕ z d x d y d z d t + 1 2 B 2 R B R ϕ y v u 2 d x d y d z d t
+ 1 2 B 2 R B R ϕ z w u 2 d x d y d z d t σ B 0 2 ρ f B 2 R u 2 ϕ R d x d y d z d t .
Upon integration with regard to t, the following holds
ν + 1 β d 1 ρ f B 2 R B R ϕ R u z 2 d x d y d z d t + σ B 0 2 ρ f B 2 R u 2 ϕ R d x d y d z d t = Ω u 0 x , y , z 2 d x d y d z + 1 2 B 2 R B R u 2 ϕ R t d x d y d z d t + 1 6 B 2 R B R ϕ x u 3 d x d y d z d t + 1 6 β d 1 3 ρ f B 2 R B R ϕ R u z 4 d x d y d z d t + 1 2 ν + 1 β d 1 ρ f B 2 R B R u 2 2 ϕ z 2 d x d y d z d t + 1 6 β d 1 3 ρ f B 2 R B R u u z 3 ϕ z d x d y d z d t + 1 2 B 2 R B R ϕ y v u 2 d x d y d z d t + 1 2 B 2 R B R ϕ z w u 2 d x d y d z d t Ω u 0 x , y , z 2 d x d y d z + ϕ t L u L 2 B 2 R B R 2 + 1 6 ϕ x L u L 3 B 2 R B R 3 + 1 2 ν + 1 β d 1 ρ f 2 ϕ z 2 L u L 2 B 2 R B R 2 + 1 6 β d 1 3 ρ f u z L 4 B 2 R B R 4
+ 1 6 β d 1 3 ρ f ϕ z L u L 2 u z L 6 B 2 R B R 3 + 1 2 ϕ y L v L 2 u L 4 B 2 R B R 2 + 1 2 ϕ z L w L 2 u L 4 B 2 R B R 2 ,
where we used Holder’s inequality, since
ϕ R x L ϕ R L , ϕ R y L ϕ R L ϕ R z L ϕ R L and ϕ t L C R ,
after using the above inequalities and Lemma 1 , we obtain
ν + 1 β d 1 ρ f u z L 2 B 2 R 2 + σ B 0 2 ρ f u L 2 B 2 R 2 Ω u 0 x , y , z 2 d x d y d z + C R u L 2 ( B 2 R B R ) 2 + C 6 R u L 3 ( B 2 R B R ) 3
+ C 2 R ν + 1 β d 1 ρ f u L 2 ( B 2 R B R ) 2 + 1 6 β d 1 3 ρ f u z L 2 B 2 R B R 2 u z B M O 2
+ C 6 R β d 1 3 ρ f u L 2 u z L 6 ( B 2 R B R ) 3 + C 2 R v L 2 u L 4 ( B 2 R B R ) 2
+ C 2 R w L 2 u L 4 B ( 2 R B R ) 2 .
Since u z L 2 0 , , B M O , then
ν + 1 β d 1 ρ f u z L 2 B 2 R 2 + σ B 0 2 ρ f u L 2 B 2 R 2 Ω u 0 x , y , z 2 d x d y d z + C R u L 2 B 2 R B R 2
+ C 6 R u L 3 B 2 R B R 3 + C 2 R ν + 1 β d 1 ρ f u L 2 B 2 R B R 2 + k 6 β d 1 3 ρ f u z L 2 B 2 R B R 2
+ C 6 R β d 1 3 ρ f u L 2 u z L 6 B 2 R B R 3 + C 2 R v L 2 u L 4 B 2 R B R 2
+ C 2 R w L 2 u L 4 B 2 R B R 2 .
Taking R , we obtain
σ B 0 2 ρ f u L 2 2 + ν + 1 β d 1 ρ f k 6 β d 1 3 ρ f u z L 2 2 d t Ω u 0 x , y , z 2 d x d y d z Ω u 0 x , y , z 2 d x d y d z .
As
ν + 1 β d 1 ρ f k 6 β d 1 3 ρ f 0 , and σ B 0 2 ρ f 0 ,
therefore
u z L 2 2 Ω u 0 x , y , z 2 d x d y d z or u L 2 2 Ω u 0 x , y , z 2 d x d y d z ,
which implies that u is bounded.
Similarly, multiplying by ( v ϕ R ) in expression (3) and applying the same procedure, it is concluded on the boundness of v as well. □
Proof of Theorem 2. 
By multiplying expression (2) by 2 u z 2 ϕ R and upon integration by parts, the following holds:
1 2 B 2 R B R t 2 u z 2 2 ϕ R d x d y d z d t + B 2 R B R u t u z ϕ R z d x d y d z d t + I 3 = ν + 1 β d 1 ρ f B 2 R 2 u z 2 2 ϕ R d x d y d z d t + 1 2 β d 1 3 ρ f B 2 R B R u z 2 2 u z 2 2 ϕ R d x d y d z d t σ B 0 2 ρ f B 2 R B R u ϕ R z u z + ϕ R u z 2 d x d y d z d t ,
where
I 3 = B 2 R 2 u z 2 ϕ R V · u d x d y d z d t
= B 2 R B R u z ϕ R z V · u d x d y d z d t + B 2 R B R u z z V · u ϕ R d x d y d z d t = B 2 R B R u z ϕ R z V · u d x d y d z d t + B 2 R B R u z V z · u ϕ R d x d y d z d t + B 2 R B R V · u z u z ϕ R d x d y d z d t .
By applying integration by parts in the last term and using expression (1), we obtain
I 3 = B 2 R B R u z ϕ R z V · u d x d y d z d t + B 2 R B R u z V z · u ϕ d x d y d z d t 1 2 B 2 R B R ϕ R · V u z 2 d x d y d z d t .
After the substitution of the obtained expression for I 3 into (6), we obtain
1 2 B 2 R B R t 2 u z 2 2 ϕ R d x d y d z d t + B 2 R B R u t u z ϕ R z d x d y d z d t + B 2 R B R u z ϕ R z V · u d x d y d z d t
+ B 2 R B R u z V z · u ϕ R d x d y d z d t 1 2 B 2 R B R ϕ R · V u z 2 d x d y d z d t
= ν + 1 β d 1 ρ f B 2 R B R 2 u z 2 2 ϕ R d x d y d z d t + 1 2 β d 1 3 ρ f B 2 R B R u z 2 2 u z 2 2 ϕ R d x d y d z d t
σ B 0 2 ρ f B 2 R B R u ϕ R z u z d x d y d z d t σ B 0 2 ρ f B 2 R B R ϕ R u z 2 d x d y d z d t .
After using Young’s inequality on the second term on the right-hand side and arranging
σ B 0 2 ρ f B 2 R B R ϕ R u z 2 d x d y d z d t + ν + 1 β d 1 ρ f B 2 R B R 2 u z 2 2 ϕ R d x d y d z d t
1 2 B 2 R B R t 2 u z 2 2 ϕ R d x d y d z d t B 2 R B R u t u z ϕ R z d x d y d z d t
B 2 R B R u z ϕ R z V · u d x d y d z d t + I 4
+ 1 2 B 2 R B R ϕ R · V u z 2 d x d y d z d t + 1 4 β d 1 3 ρ f B 2 R B R u z 4 ϕ R d x d y d z d t
+ 1 4 β d 1 3 ρ f B 2 R B R 2 u z 2 4 ϕ R d x d y d z d t σ B 0 2 ρ f B 2 R B R u ϕ R z u z d x d y d z d t ,
where
I 4 = B 2 R B R u z V z · u ϕ R d x d y d z d t
= B 2 R B R u x u z 2 ϕ R d x d y d z d t + B 2 R B R u z v y v z ϕ R d x d y d z d t + B 2 R B R u z v z w z ϕ R d x d y d z d t .
By applying Equation (1) to the third term on the right-hand side
I 4 = B 2 R B R u x u z 2 ϕ R d x d y d z d t + B 2 R B R u z v y u x ϕ R d x d y d z d t .
Introducing the obtained value of I 4 in (7)
σ B 0 2 ρ f B 2 R B R ϕ R u z 2 d x d y d z d t + ν + 1 β d 1 ρ f B 2 R B R 2 u z 2 2 ϕ R d x d y d z d t
1 2 B 2 R B R t 2 u z 2 2 ϕ R d x d y d z d t B 2 R B R u t u z ϕ R z d x d y d z d t
B 2 R B R u z ϕ R z V · u d x d y d z d t B 2 R B R u x u z 2 ϕ R d x d y d z d t + B 2 R B R u z v y u x ϕ R d x d y d z d t
+ 1 2 B 2 R B R ϕ R · V u z 2 d x d y d z d t + 1 4 β d 1 3 ρ f B 2 R B R u z 4 ϕ R d x d y d z d t
+ 1 4 β d 1 3 ρ f B 2 R B R 2 u z 2 4 ϕ R d x d y d z d t σ B 0 2 ρ f B 2 R B R u ϕ R z u z d x d y d z d t
Integrating the first term on the right-hand side with regard to t
σ B 0 2 ρ f B 2 R B R ϕ R u z 2 d x d y d z d t + ν + 1 β d 1 ρ f B 2 R B R 2 u z 2 2 ϕ R d x d y d z d t
Ω 2 u 0 x , y , z z 2 2 d x d y d z + 1 2 B 2 R B R 2 u z 2 2 ϕ R t d x d y d z d t
B 2 R B R u t u z ϕ R z d x d y d z d t B 2 R B R u z ϕ R z V · u d x d y d z d t + I 5 + I 6
+ 1 2 B 2 R B R ϕ R · V u z 2 d x d y d z d t + 1 4 β d 1 3 ρ f B 2 R B R u z 4 ϕ R d x d y d z d t
+ 1 4 β d 1 3 ρ f B 2 R B R 2 u z 2 4 ϕ R d x d y d z d t σ B 0 2 ρ f B 2 R B R u ϕ R z u z d x d y d z d t ,
where
I 5 = B 2 R B R u x u z 2 ϕ R d x d y d z d t ,
and
I 6 = B 2 R B R u z v y u x ϕ R d x d y d z d t .
Using Lemma 2 on I 5 and I 6 , we obtain
I 5 K 3 ¯ u z L 4 B 2 R B R 2 u x L 4 B 2 R B R 3 4 2 u x 2 L 4 B 2 R B R 1 2 ϕ R L 2 1 2 ϕ R y L 2 B 2 R B R 1 4 u z L 4 B 2 R B R 4 + K 4 ¯ u x L 4 B 2 R B R 3 2 2 u x 2 L 4 B 2 R B R ϕ R L 2 ϕ R y L 2 B 2 R B R
I 6 K 5 ¯ u z L 2 B 2 R B R u x 2 L 2 B 2 R B R 3 4 x u x 2 L 2 B 2 R B R 1 2 ϕ R L 2 1 2 ϕ R y L 2 B 2 R B R 1 2 u z L 2 B 2 R B R 2 + K 6 ¯ u x 2 L 4 B 2 R B R 3 2 x u x 2 L 4 B 2 R B R ϕ R L 2 1 ϕ R y L 2 B 2 R B R
From Holder’s inequality, Equation (8) becomes
σ B 0 2 ρ f u z L 2 B 2 R B R 2 + ν + 1 β d 1 ρ f 2 u z 2 L 2 B 2 R B R 2
Ω 2 u 0 x , y , z z 2 2 d x d y d z + ϕ R z L B 2 R B R u t L 2 B 2 R B R u z L 2 B 2 R B R
+ K 4 ¯ u x L 4 B 2 R B R 3 2 2 u x 2 L 4 B 2 R B R . ϕ R L 2 B 2 R B R ϕ R y L 2
+ K 6 ¯ u x 2 L 4 B 2 R B R 3 2 x u x 2 L 4 B 2 R B R . ϕ R L 2 B 2 R B R ϕ R y L 2
+ 1 2 V L 2 B 2 R B R u z L 4 B 2 R B R 2 ϕ R L + 1 4 β d 1 3 ρ f + u z L 4 B 2 R B R 4
+ 1 4 β d 1 3 ρ f 2 u z 2 L 4 B 2 R B R 4 + u z L 2 B 2 R B R ϕ R z L V · u L 2 B 2 R B R
+ σ B 0 2 ρ f ϕ R z L u z L 2 B 2 R B R u L 2 B 2 R B R ,
Ω 2 u 0 x , y , z z 2 2 d x d y d z + ϕ R z L u t L 2 B 2 R B R u z L 2 B 2 R B R
+ K 4 ¯ u x L 4 B 2 R B R 3 2 2 u x 2 L 4 B 2 R B R ϕ R y L 2
+ K 6 ¯ u x 2 L 4 B 2 R B R 3 2 x u x 2 L 4 B 2 R B R ϕ R y L 2
+ 1 2 V L 2 B 2 R B R u z L 4 B 2 R B R 2 ϕ R L + 1 4 β d 1 3 ρ f + u z L 2 B 2 R B R 2 u z B M O 2
+ 1 4 β d 1 3 ρ f 2 u z 2 L 2 B 2 R B R 2 2 u z 2 B M O 2 + u z L 2 B 2 R B R ϕ R z L B 2 R B R V · u L 2 B 2 R B R
+ σ B 0 2 ρ f ϕ R z L B 2 R B R u z L 2 B 2 R B R u L 2 B 2 R B R ,
where we used Lemma 1, since
ϕ R x L ϕ R L , ϕ R y L ϕ R L ϕ R z L ϕ R L , ϕ R L C R and ϕ R t L C R
and u z , 2 u z 2 L 2 0 , , B M O . Therefore,
σ B 0 2 ρ f K 7 u z L 2 B 2 R B R 2 + ν K 8 2 u z 2 L 2 B 2 R B R 2
Ω 2 u 0 x , y , z z 2 2 d x d y d z + C K 4 ¯ R u x L 4 B 2 R B R 3 2 2 u x 2 L 4 B 2 R B R + C K 6 ¯ R u x 2 L 4 B 2 R B R 3 2 x u x 2 L 4 B 2 R B R
+ C R u z L 2 V · u L 2 B 2 R B R + σ B 0 2 ρ f C R u z L 2 u L 2 B 2 R B R ,
Taking R , we obtain
σ B 0 2 ρ f K 7 u z L 2 2 + ν K 8 2 u z 2 L 2 2 Ω 2 u 0 x , y , z z 2 2 d x d y d z Ω 2 u 0 x , y , z z 2 2 d x d y d z .
As
σ B 0 2 ρ f K 7 0 and ν K 8 0 ,
therefore
u z L 2 2 Ω 2 u 0 x , y , z z 2 2 d x d y d z and 2 u z 2 L 2 2 Ω 2 u 0 x , y , z z 2 2 d x d y d z .
Considering Poincare’s inequality,
K 8 u L 2 u z L 2 2 Ω 2 u 0 x , y , z z 2 2 d x d y d z ,
which implies that u is bounded.
Similarly, by multiplying by 2 V z 2 ϕ R in (3) and repeating the same process, it is possible to obtain the boundness of v. □
Proof of Theorem 3. 
Multiplying the expression (2) by ( u p 2 u ϕ R ) , with p > 2 , and upon integration
B 2 R B R u t u p 1 ϕ R d x d y d z d t 1 p + 1 B 2 R B R ϕ R x u p + 1 d x d y d z d t
1 p B 2 R B R v y u p ϕ R d x d y d z d t 1 p B 2 R B R ϕ R y v u p d x d y d z d t
1 p B 2 R B R w z u p ϕ R d x d y d z d t 1 p B 2 R B R ϕ R z w u p d x d y d z d t
= ν + 1 β d 1 ρ f p 1 B 2 R B R u p 2 u z 2 ϕ R d x d y d z d t + B 2 R B R ϕ R z u p 1 u z d x d y d z d t + 1 2 β d 1 3 ρ f 1 3 B 2 R B R ϕ R z u p 1 u z 3 d x d y d z d t + p 1 3 B 2 R B R ϕ R p 2 u z 4 d x d y d z d t
σ B 0 2 ρ f B 2 R B R u p ϕ R d x d y d z d t ,
which implies that
B 2 R B R u t u p 1 ϕ R d x d y d z d t = 1 p B 2 R B R v y + w z u p ϕ R d x d y d z d t σ B 0 2 ρ f B 2 R B R u p ϕ R d x d y d z d t
ν + 1 β d 1 ρ f p 1 B 2 R B R u p 2 u z 2 ϕ R d x d y d z d t + p 1 6 β d 1 3 ρ f B 2 R B R ϕ R u p 2 u z 4 d x d y d z d t
+ 1 p + 1 B 2 R B R ϕ R x u p + 1 d x d y d z d t ν + 1 β d 1 ρ f B 2 R B R ϕ R z u p 1 u z d x d y d z d t
+ 1 6 β d 1 3 ρ f B 2 R B R ϕ R z u p 1 u z 3 d x d y d z d t + 1 p B 2 R B R ϕ R y v u p d x d y d z d t
+ 1 p B 2 R B R ϕ R z w u p d x d y d z d t .
From Equation (1), the following holds
B 2 R B R u t u p 1 ϕ R d x d y d z d t = 1 p B 2 R B R u x u p ϕ R d x d y d z d t σ B 0 2 ρ f B 2 R B R u p ϕ R d x d y d z d t
ν + 1 β d 1 ρ f p 1 B 2 R B R u p 2 u z 2 ϕ R d x d y d z d t
+ p 1 6 β d 1 3 ρ f B 2 R B R ϕ R p 2 u z 4 d x d y d z d t ν + 1 β d 1 ρ f B 2 R B R ϕ R z u p 1 u z d x d y d z d t
+ 1 p + 1 B 2 R B R ϕ R x u p + 1 d x d y d z d t + 1 p B 2 R B R ϕ R z w u p d x d y d z d t
+ 1 6 β d 1 3 ρ f B 2 R B R ϕ R z u p 1 u z 3 d x d y d z d t + 1 p B 2 R B R ϕ R y v u p d x d y d z d t .
By integrating the first term on the right-hand side,
B 2 R B R u t u p 1 ϕ R d x d y d z d t = 1 p p + 1 B 2 R B R u p + 1 ϕ R x d x d y d z d t σ B 0 2 ρ f B 2 R B R u p ϕ R d x d y d z d t
ν + 1 β d 1 ρ f p 1 B 2 R B R u p 2 u z 2 ϕ R d x d y d z d t
+ p 1 6 β d 1 3 ρ f B 2 R B R ϕ R p 2 u z 4 d x d y d z d t
+ 1 p + 1 B 2 R B R ϕ R x u p + 1 d x d y d z d t ν + 1 β d 1 ρ f B 2 R B R ϕ R z u p 1 u z d x d y d z d t
+ 1 6 β d 1 3 ρ f B 2 R B R ϕ R z u p 1 u z 3 d x d y d z d t + 1 p B 2 R B R ϕ R y v u p d x d y d z d t
+ 1 p B 2 R B R ϕ R z w u p d x d y d z d t .
Considering the integration with regard to t , we have
1 p Ω u 0 x , y , z p d x d y d z B 2 R B R ϕ R t u p d x d y d z d t = 1 p p + 1 B 2 R B R u p + 1 ϕ R x d x d y d z d t
σ B 0 2 ρ f B 2 R B R u p ϕ R d x d y d z d t ν + 1 β d 1 ρ f p 1 B 2 R B R u p 2 u z 2 ϕ R d x d y d z d t
+ p 1 6 β d 1 3 ρ f B 2 R B R ϕ R p 2 u z 4 d x d y d z d t
+ 1 p + 1 B 2 R B R ϕ R x u p + 1 d x d y d z d t ν + 1 β d 1 ρ f B 2 R B R ϕ R z u p 1 u z d x d y d z d t
+ 1 6 β d 1 3 ρ f B 2 R B R ϕ R z u p 1 u z 3 d x d y d z d t + 1 p B 2 R B R ϕ R y v u p d x d y d z d t
+ 1 p B 2 R B R ϕ R z w u p d x d y d z d t .
Now, considering Holder’s inequality
σ B 0 2 ρ f u L p B 2 R B R p + ν + 1 β d 1 ρ f p 1 u L 2 ( p 2 ) p 2 u z L 4 B 2 R B R 2
1 p Ω u 0 x , y , z p d x d y d z + ϕ R t L u L p B 2 R B R p + 1 p p + 1 ϕ R x L u L 2 ( p 2 ) B 2 R B R p 1
+ p 1 6 β d 1 3 ρ f u L 2 ( p 2 ) p 2 u z L 8 B 2 R B R 4 + 1 p + 1 ϕ R x L u L 2 ( p 1 ) B 2 R B R p + 1
+ 1 p ϕ R z L w L 2 . u L 2 p B 2 R B R p ν + 1 β d 1 ρ f ϕ R z L u L 2 ( p 1 ) p 1 u z L 2 B 2 R B R
+ 1 6 β d 1 3 ρ f ϕ R z L u L 2 ( p 1 ) p 1 u z L 6 B 2 R B R 3 + 1 p ϕ R y L v L 2 u L 2 p B 2 R B R p .
Since
ϕ R x L ϕ R L , ϕ R y L ϕ R L , ϕ R z L ϕ R L , ϕ R L C R , and ϕ R t L C R
and using Lemma 1, expression (9) becomes
σ B 0 2 ρ f u L p B 2 R B R p + ν + 1 β d 1 ρ f p 1 u L 2 ( p 2 ) p 2 u z L 4 B 2 R B R 2
1 p Ω u 0 x , y , z p d x d y d z + C R u L p B 2 R B R p + C p p + 1 R u L 2 ( p 2 ) B 2 R B R p 1
+ p 1 6 β d 1 3 ρ f . u L 2 ( p 2 ) p 2 u z L 4 B 2 R B R 2 u z B M O 2
+ C R p + 1 u L 2 ( p 1 ) B 2 R B R p + 1 + C p R w L 2 . u L 2 p B 2 R B R p
ν + 1 β d 1 ρ f C R u L 2 ( p 1 ) p 1 u z L 2 B 2 R B R
+ C 6 R β d 1 3 ρ f u L 2 ( p 1 ) p 1 u z L 6 B 2 R B R 3 + C p R v L 2 . u L 2 p B 2 R B R p .
Since u z L 2 0 , , B M O and considering R ,
σ B 0 2 ρ f u L p p + p 1 ν + 1 β d 1 ρ f K 8 6 β d 1 3 ρ f u L 2 ( p 2 ) p 2 u z L 4 2 1 p Ω u 0 x , y , z p d x d y d z 1 p Ω u 0 x , y , z p d x d y d z .
As
ν + 1 β d 1 ρ f p 1 C 1 p 1 6 β d 1 3 ρ f 0 and σ B 0 ρ f 0 ,
therefore
u L 2 ( p 2 ) p 2 u z L 4 2 1 p Ω u 0 x , y , z p d x d y d z
and
u L p p 1 p Ω u 0 x , y , z p d x d y d z ,
which implies that u is bounded. Similarly, multiplying by ( v p 2 v ϕ R ) in the expression (3) and repeating the same process, we find that v is bounded. □

4. Conclusions

The postulated theorems, Theorems 1–3, have been shown based on the supporting lemmas mentioned along with the proofs. Such theorems have allowed us to comment on the regularity results for an Eyring–Powell fluid with stretching velocities in a plane Ω p and flowing along the z-axis. The results have been provided for globally bounded initial data as well as their corresponding derivatives and while the variations of velocity along the z-axis belong to the space L 2 and B M O . The regularity results have been given for the general spaces L 2 and L p , p > 2 .

Author Contributions

Conceptualization, S.u.R. and J.L.D.; methodology, J.L.D., S.u.R. and M.N.; validation, J.L.D., S.u.R., and M.N.; formal analysis, S.u.R., J.L.D. and M.N.; investigation, J.L.D. and S.u.R.; resources, J.L.D.; data curation, J.L.D., S.u.R. and M.N.; writing—original draft preparation, J.L.D. and S.u.R.; writing—review and editing, J.L.D., S.u.R. and M.N.; visualization, J.L.D.; supervision, J.L.D.; project administration, J.L.D.; funding acquisition, J.L.D. All authors have read and agreed to the published version of the manuscript.

Funding

This research is funded by the University Francisco de Vitoria School of Engineering.

Data Availability Statement

This research has no associated data.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ara, A.; Khan, N.A.; Khan, H.; Sultan, F. Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially shrinking sheet. Ain-Shams Eng. J. 2014, 5, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
  2. Hayat, T.; Iqbal, Z.; Qasim, M.; Obaidat, S. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. Int. J. Heat Mass Transf. 2012, 55, 1817–1822. [Google Scholar] [CrossRef]
  3. Hayat, T.; Awais, M.; Asghar, S. Radiative effects in a threedimensional flow of MHD Eyring-Powell fluid. J. Egypt Math. Soc. 2013, 21, 379–384. [Google Scholar] [CrossRef] [Green Version]
  4. Akbar, N.S.; Ebaid, A.; Khan, Z.H. Numerical analysis of magnetic field on Eyring-Powell fluid flow towards a stretching sheet. J. Magn. Magn. Mater. 2015, 382, 355–358. [Google Scholar] [CrossRef]
  5. Jalil, M.; Asghar, S.; Imran, S.M. Self similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in parallel free stream. Int. J. HeatMass Transf. 2013, 65, 73–79. [Google Scholar] [CrossRef]
  6. Khan, J.A.; Mustafa, M.; Hayat, T.; Farooq, M.A.; Alsaedi, A.; Liao, S.J. On model for three-dimensional flow of nanofluid: An application to solar energy. J. Mol. Liq. 2014, 194, 41–47. [Google Scholar] [CrossRef]
  7. Javed, T.; Ali, N.; Abbas, Z.; Sajid, M. Flow of an Eyring–Powell nonnewtonian fluid over a stretching sheet. Chem. Eng. Commun. 2013, 200, 327–336. [Google Scholar] [CrossRef]
  8. Riaz, A.; Ellahi, R.; Sait, S.M. Role of hybrid nanoparticles in thermal performance of peristaltic flow of Eyring–Powell fluid model. J. Therm. Anal. Calorim. 2021, 143, 1021–1035. [Google Scholar] [CrossRef]
  9. Malik, M.Y.; Hussain, A.; Nadeem, S. Boundary layer flow of an Eyring–Powell model fluid due to a stretching cylinder with variable viscosity. Sci. Iran. 2013, 20, 313–321. [Google Scholar]
  10. Bhatti, M.M.; Abbas, T.; Rashidi, M.M.; Ali, M.E.S.; Yang, Z. Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy 2016, 18, 224. [Google Scholar] [CrossRef] [Green Version]
  11. Umar, M.; Akhtar, R.; Sabir, Z.; Wahab, H.A.; Zhiyu, Z.; Imran, A.; Shoaib, M.; Raja, M.A.Z. Numerical Treatment for the Three-Dimensional Eyring-Powell Fluid Flow over a Stretching Sheet with Velocity Slip and Activation Energy. Adv. Math. Phys. 2019, 2019, 9860471. [Google Scholar] [CrossRef] [Green Version]
  12. Hayat, T.; Ashraf, B.; Shehzad, S.A.; Abouelmagd, E. Three-dimensional flow of Eyring Powell nanofluid over an exponentially stretching sheet. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 593–616. [Google Scholar] [CrossRef]
  13. Mallick, B.; Misra, J.C. Peristaltic flow of Eyring-Powell nanofluid under the action of an electromagnetic field. Eng. Sci. Technol. Int. J. 2019, 22, 266–281. [Google Scholar] [CrossRef]
  14. Chae, D.; Wolf, J. On Liouville-type Theorems for the Steady-Navier Stokes equations in R3. J. Differ, Eq. 2016, 261, 5541–5560. [Google Scholar] [CrossRef]
  15. Serogin, G. Liouville-type Theorems for the Stationary Navier-Stokes equations. Non-Lineartiy 2016, 29, 2191–2195. [Google Scholar] [CrossRef] [Green Version]
  16. Chamorro, D.; Jarrin, O.; Lemarie-Rieusset, P.G. Some Liouvie Theorems for stationary Navier-Stokes equations in Lebesgue and Morrey Spaces. arXiv 2018, arXiv:1806.03003. [Google Scholar]
  17. Chae, D. Liouville-type theorems for the forced Euler equations and the Navier-Stokes equations. Commun. Math. Phys. 2014, 326, 37–48. [Google Scholar] [CrossRef] [Green Version]
  18. Chae, D.; Yoneda, T. On the Liouville theorem for the stationary Navier-Stokes equations in a critical space. J. Math. Anal. Appl. 2013, 405, 706–710. [Google Scholar] [CrossRef]
  19. Koch, G.; Nadirashvili, N.; Seregin, G.A.; Sverak, V. Liouville theorems for the Navier-Stokes equations and applications. Acta Math. 2009, 203, 83–105. [Google Scholar] [CrossRef]
  20. Solonnikov, A. Estimates of the solutions of the nonstationary Navier-Stokes system. Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 7. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 1973, 38, 153–231. [Google Scholar]
  21. Li, Z.; Niu, P. Liouville type Theorems for the 3D stationary Hall-MHD equations. ZAMM-J. Appl. Math. Mech. 2020, 100, e201900200. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Díaz, J.L.; Rahman, S.u.; Nouman, M. Liouville-Type Results for a Two-Dimensional Stretching Eyring–Powell Fluid Flowing along the z-Axis. Mathematics 2022, 10, 631. https://doi.org/10.3390/math10040631

AMA Style

Díaz JL, Rahman Su, Nouman M. Liouville-Type Results for a Two-Dimensional Stretching Eyring–Powell Fluid Flowing along the z-Axis. Mathematics. 2022; 10(4):631. https://doi.org/10.3390/math10040631

Chicago/Turabian Style

Díaz, José L., Saeed ur Rahman, and Muhammad Nouman. 2022. "Liouville-Type Results for a Two-Dimensional Stretching Eyring–Powell Fluid Flowing along the z-Axis" Mathematics 10, no. 4: 631. https://doi.org/10.3390/math10040631

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop