A Linear, Second-Order, and Unconditionally Energy-Stable Method for the L2-Gradient Flow-Based Phase-Field Crystal Equation
Abstract
:1. Introduction
2. Linear, Second-Order, and Unconditionally Energy-Stable Method
3. Numerical Experiments
3.1. Accuracy Test
3.2. Energy Stability Test
3.3. Pattern Formation
3.4. Crystal Growth
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elder, K.R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling elasticity in crystal growth. Phys. Rev. Lett. 2002, 88, 245701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elder, K.R.; Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 2004, 70, 051605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swift, J.; Hohenberg, P.C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 1977, 15, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Wise, S.M.; Wang, C.; Lowengrub, J.S. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 2009, 228, 5323–5339. [Google Scholar] [CrossRef] [Green Version]
- Wise, S.M.; Wang, C.; Lowengrub, J.S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 2009, 47, 2269–2288. [Google Scholar] [CrossRef] [Green Version]
- Gomez, H.; Nogueira, X. An unconditionally energy-stable method for the phase field crystal equation. Comput. Methods Appl. Mech. Engrg. 2012, 249–252, 52–61. [Google Scholar] [CrossRef]
- Vignal, P.; Dalcin, L.; Brown, D.L.; Collier, N.; Calo, V.M. An energy-stable convex splitting for the phase-field crystal equation. Comput. Struct. 2015, 158, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Mohammadi, V. The numerical simulation of the phase field crystal (PFC) and modified phase field crystal (MPFC) models via global and local meshless methods. Comput. Methods Appl. Mech. Engrg. 2016, 298, 453–484. [Google Scholar] [CrossRef]
- Shin, J.; Lee, H.G.; Lee, J.-Y. First and second order numerical methods based on a new convex splitting for phase-field crystal equation. J. Comput. Phys. 2016, 327, 519–542. [Google Scholar] [CrossRef]
- Yang, X.; Han, D. Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 2017, 330, 1116–1134. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shen, J. Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation. Adv. Comput. Math. 2020, 46, 48. [Google Scholar] [CrossRef]
- Shin, J.; Lee, H.G.; Lee, J.-Y. Long-time simulation of the phase-field crystal equation using high-order energy-stable CSRK methods. Comput. Methods Appl. Mech. Eng. 2020, 364, 112981. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X. Efficient fully discrete finite-element numerical scheme with second-order temporal accuracy for the phase-field crystal model. Mathematics 2022, 10, 155. [Google Scholar] [CrossRef]
- Nawaz, R.; Ali, N.; Zada, L.; Shah, Z.; Tassaddiq, A.; Alreshidi, N.A. Comparative analysis of natural transform decomposition method and new iterative method for fractional foam drainage problem and fractional order modified regularized long-wave equation. Fractals 2020, 28, 2050124. [Google Scholar] [CrossRef]
- Farid, S.; Nawaz, R.; Shah, Z.; Islam, S.; Deebani, W. New iterative transform method for time and space fractional (n+1)-dimensional heat and wave type equations. Fractals 2021, 29, 2150056. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X. Numerical approximations for a new L2-gradient flow based Phase field crystal model with precise nonlocal mass conservation. Comput. Phys. Commun. 2019, 243, 51–67. [Google Scholar] [CrossRef]
- Lee, H.G. A new conservative Swift-Hohenberg equation and its mass conservative method. J. Comput. Appl. Math. 2020, 375, 112815. [Google Scholar] [CrossRef]
- Lee, H.G. Stability condition of the second-order SSP-IMEX-RK method for the Cahn–Hilliard equation. Mathematics 2020, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Song, M.; Song, S. A fourth order energy dissipative scheme for a traffic flow model. Mathematics 2020, 8, 1238. [Google Scholar] [CrossRef]
- Shin, J.; Lee, H.G. A linear, high-order, and unconditionally energy stable scheme for the epitaxial thin film growth model without slope selection. Appl. Numer. Math. 2021, 163, 30–42. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.G. Unconditionally energy stable second-order numerical scheme for the Allen–Cahn equation with a high-order polynomial free energy. Adv. Differ. Equ. 2021, 2021, 416. [Google Scholar] [CrossRef]
- Lee, H.G. A non-iterative and unconditionally energy stable method for the Swift–Hohenberg equation with quadratic–cubic nonlinearity. Appl. Math. Lett. 2022, 123, 107579. [Google Scholar] [CrossRef]
- Lee, H.G.; Shin, J.; Lee, J.-Y. A high-order and unconditionally energy stable scheme for the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier. J. Sci. Comput. 2022, 90, 51. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.G. A Linear, Second-Order, and Unconditionally Energy-Stable Method for the L2-Gradient Flow-Based Phase-Field Crystal Equation. Mathematics 2022, 10, 548. https://doi.org/10.3390/math10040548
Lee HG. A Linear, Second-Order, and Unconditionally Energy-Stable Method for the L2-Gradient Flow-Based Phase-Field Crystal Equation. Mathematics. 2022; 10(4):548. https://doi.org/10.3390/math10040548
Chicago/Turabian StyleLee, Hyun Geun. 2022. "A Linear, Second-Order, and Unconditionally Energy-Stable Method for the L2-Gradient Flow-Based Phase-Field Crystal Equation" Mathematics 10, no. 4: 548. https://doi.org/10.3390/math10040548
APA StyleLee, H. G. (2022). A Linear, Second-Order, and Unconditionally Energy-Stable Method for the L2-Gradient Flow-Based Phase-Field Crystal Equation. Mathematics, 10(4), 548. https://doi.org/10.3390/math10040548