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Abstract: Strong-stability-preserving (SSP) implicit–explicit (IMEX) Runge–Kutta (RK) methods
for the Cahn–Hilliard (CH) equation with a polynomial double-well free energy density were
presented in a previous work, specifically H. Song’s “Energy SSP-IMEX Runge–Kutta Methods
for the Cahn–Hilliard Equation” (2016). A linear convex splitting of the energy for the CH equation
with an extra stabilizing term was used and the IMEX technique was combined with the SSP methods.
And unconditional strong energy stability was proved only for the first-order methods. Here, we
use a nonlinear convex splitting of the energy to remove the condition for the convexity of split
energies and give a stability condition for the coefficients of the second-order method to preserve the
discrete energy dissipation law. Along with a rigorous proof, numerical experiments are presented to
demonstrate the accuracy and unconditional strong energy stability of the second-order method.

Keywords: Cahn–Hilliard equation; energy stability; implicit–explicit methods; Runge–Kutta
methods

1. Introduction

In this paper, we consider the Cahn–Hilliard (CH) equation [1]:

∂φ

∂t
= M∆

(
F′(φ)− ε2∆φ

)
, (1)

where φ is the order parameter, M > 0 is a mobility, F(φ) = 1
4 (φ

2 − 1)2 is a polynomial double-well
free energy density, and ε > 0 is the gradient energy coefficient. We assume that φ and∇φ are periodic
along the normal to the boundary of a domain Ω ⊂ Rd (d = 1, 2, 3). The CH equation has been applied
to a wide range of problems [2] and is an H−1-gradient flow of the following free energy functional:

E(φ) :=
∫

Ω

(
F(φ) +

ε2

2
|∇φ|2

)
dx, (2)

i.e., ∂φ
∂t = M∆ δE

δφ , where δ
δφ denotes the variational derivative. Thus, E(φ) is nonincreasing in time.

The interesting coarsening process of large systems usually occurs on a very long time scale.
Therefore, energy stable schemes with high-order time accuracy are highly desirable to perform
long time simulations for the coarsening process and there are various related works. Gomez and
Hughes introduced a second-order semi-implicit method based on the Crank–Nicolson method [3].
In [4], Guan et al. presented a second-order convex splitting scheme by combining the convex
splitting idea [5,6] and the secant method [7]. Yang developed first- and second-order schemes
based on the invariant energy quadratization idea [8]. In [9], Shin et al. proposed high-order
(up to third-order) convex splitting schemes by combining the convex splitting idea and the specially
designed implicit–explicit (IMEX) Runge–Kutta (RK) method. Shen et al. [10] presented second-order
backward differentiation and Crank–Nicolson formulas based on the scalar auxiliary variable approach.
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In [11–13], Gong et al. proposed high-order (up to sixth-order) schemes by combining the energy
quadratization technique and a specific class of RK methods. Recently, strong-stability-preserving
(SSP) IMEX-RK methods for the CH equation were presented [14]. The main idea of the methods was
to use a linear convex splitting of E(φ) with an extra stabilizing term (convex and concave parts of
E(φ) are treated implicitly and explicitly, respectively) and combine the IMEX technique [15,16] with
the SSP methods [17–19]. In [14], unconditional strong energy stability (the energy is bounded by its
value at the previous time step) was proved only for the first-order time-accurate methods.

In our work, we concentrate mainly on energy stability of the second-order time-accurate
(three-stage) SSP-IMEX-RK method for the CH equation. The main issue, which is different from
that in [14], consists of two aspects. First, we use a nonlinear convex splitting of E(φ) to remove the
condition for the convexity of split energies. Second, we give a stability condition for the coefficients of
the second-order method to preserve the discrete energy dissipation law.

This paper is organized as follows. In Section 2, we present the second-order method with
the nonlinear convex splitting and prove the method with the stability condition is unconditionally
strongly energy stable. In Section 3, we present numerical examples showing the accuracy and energy
stability of the method. Finally, conclusions are drawn in Section 4.

2. Second-Order SSP-IMEX-RK Method and Its Stability Condition

In order to present the second-order SSP-IMEX-RK method for the CH equation, we split E(φ)
into convex and concave parts [5,6]:

E(φ) = Ec(φ)− Ee(φ) =
∫

Ω

(
φ4

4
+

1
4
+

ε2

2
|∇φ|2

)
dx−

∫
Ω

φ2

2
dx. (3)

Then, we have the following lemma.

Lemma 1. The convexity of Ec(φ) and Ee(φ) yields the following inequality:

E(φ)− E(ψ) ≤
(

δEc(φ)

δφ
− δEe(ψ)

δφ
, φ− ψ

)
. (4)

Proof. We refer to [20].

Combining the nonlinear convex splitting (3) with the second-order (three-stage) SSP-IMEX-RK
method, we obtain the following scheme:

φ(1) = φn + M∆t ∆

(
δEc(φ(1))

δφ
− δEe(φn)

δφ

)
,

φ(2) = α10φn + α11φ(1) + β1M∆t ∆

(
δEc(φ(2))

δφ
− δEe(φ(1))

δφ

)
,

φn+1 = α20φn + α21φ(1) + α22φ(2) + β2M∆t ∆

(
δEc(φn+1)

δφ
− δEe(φ(2))

δφ

)
,

(5)

where the coefficients α10, α11, α20, α21, α22, β1, β2 satisfy the second-order conditions:

α10 + α11 = 1,
α20 + α21 + α22 = 1,
α21 + α22α11 + α22β1 + β2 = 1,
α21 + α22α11 + α22α11β1 + α22β2

1 + α21β2 + α22α11β2 + α22β1β2 + β2
2 = 1

2 ,
α22β1 + α11β2 + β1β2 = 1

2 .
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The above system is under-determined and does not have a unique solution. Examples of the
coefficients are listed in (7)–(10).

Definition 1. (Stability Condition). Define a matrix M given by

M =

 β2 0 0
(α22 − 1)β1 β1 0

α11(α22 − 1) + α21 −α10 1

 .

The stability condition is defined as

M is positive semi-definite. (6)

Next, we show that the scheme (5) with their coefficients satisfying the stability condition is
unconditionally strongly energy stable.

Theorem 1. The scheme (5) with their coefficients satisfying the stability condition (6) is unconditionally
strongly energy stable, i.e., it satisfies

E(φn+1) ≤ E(φn)

for any time step ∆t > 0.

Proof. Using Lemma 1, we have

E(φn+1)− E(φn)

=
(
E(φn+1)− E(φ(2))

)
+
(
E(φ(2))− E(φ(1))

)
+
(
E(φ(1))− E(φn)

)
≤
(

µn+1, φn+1 − φ(2)
)
+
(

µ(2), φ(2) − φ(1)
)
+
(

µ(1), φ(1) − φn
)

,

where µn+1 = δEc(φn+1)
δφ − δEe(φ(2))

δφ , µ(2) = δEc(φ(2))
δφ − δEe(φ(1))

δφ , and µ(1) = δEc(φ(1))
δφ − δEe(φn)

δφ .
The second-step of (5) can be rewritten as follows:

φ(2) − φ(1) = α11(φ
(1) − φn) + M∆t ∆(β1µ(2) − µ(1)) = M∆t ∆(β1µ(2) − α10µ(1)).

And the third-step of (5) is

φn+1 − φ(2) = α22(φ
(2) − φ(1)) + (−α11 + α21 + α22)(φ

(1) − φn) + M∆t ∆(β2µn+1 − β1µ(2))

= M∆t ∆(β2µn+1 + (α22 − 1)β1µ(2) + (α11(α22 − 1) + α21)µ
(1)).

Then,

E(φn+1)− E(φn)

≤ −M∆t
( (
∇µn+1,∇(β2µn+1 + (α22 − 1)β1µ(2) + (α11(α22 − 1) + α21)µ

(1))
)

+
(
∇µ(2),∇(β1µ(2) − α10µ(1))

)
+
(
∇µ(1),∇µ(1)

) )
= −M∆t

∫
Ω
(∇µn+1,∇µ(2),∇µ(1)) M (∇µn+1,∇µ(2),∇µ(1))T dx.

Since M is positive semi-definite, E(φn+1)− E(φn) ≤ 0. This completes the proof.



Mathematics 2020, 8, 11 4 of 7

Examples of the coefficients of the scheme (5), satisfying the stability condition (6), are

α10 =
1
2

, α11 =
1
2

, α20 =
1
2

, α21 =
3
2

, α22 = −1, β1 = 1, β2 = 1, (7)

α10 =
7
6

, α11 = −1
6

, α20 =
7
6

, α21 =
5
6

, α22 = −1, β1 =
3
2

, β2 =
3
2

, (8)

α10 =
7
4

, α11 = −3
4

, α20 =
7
4

, α21 =
1
4

, α22 = −1, β1 = 2, β2 = 2, (9)

α10 =
23
10

, α11 = −13
10

, α20 =
23
10

, α21 = − 3
10

, α22 = −1, β1 =
5
2

, β2 =
5
2

. (10)

3. Numerical Experiments

3.1. Numerical Implementation

In order to make order of accuracy in space compatible with second-order in time, we employ
the Fourier spectral method [21–23] in space for the scheme (5) to arrive at fully discrete second-order
SSP-IMEX-RK method. Then, the fully discrete second-order SSP-IMEX-RK method with (6) can be
proved similarly to preserve the energy dissipation law in the fully discrete level.

We consider a two-dimensional space Ω = [0, Lx]× [0, Ly] for simplicity and clarity of exposition.
One- and three-dimensional cases are defined analogously. Let Nx and Ny be positive integers and
∆x = Lx/Nx and ∆y = Ly/Ny be the space step sizes. In order to solve with the periodic boundary
condition, we employ the discrete Fourier transform: for kx = 0, 1, . . . , Nx − 1 and ky = 0, 1, . . . , Ny − 1,

φ̂kxky =
Nx−1

∑
lx=0

Ny−1

∑
ly=0

φlx ly e−i(xlx ξkx+yly ξky ),

where xlx = lx∆x, ξkx = 2πkx/Lx, yly = ly∆y, and ξky = 2πky/Ly. Then, the first-step of (5) can be
rewritten in the form

φ(1) −M∆tF−1
[
−(ξ2

kx
+ ξ2

ky
)
(
F
[
(φ(1))3

]
+ ε2(ξ2

kx
+ ξ2

ky
)F
[
φ(1)

])]
= φn + M∆tF−1

[
(ξ2

kx
+ ξ2

ky
)F [φn]

]
, (11)

where F denotes the discrete Fourier transform and F−1 its inverse transform.
The nonlinearity in Equation (11) comes from (φ(1))3 and this can be handled using the truncated

Taylor expansion [21–23]

(φn,m+1)3 ≈ (φn,m)3 + 3(φn,m)2(φn,m+1 − φn,m)

for m = 0, 1, . . .. We then develop a fixed point iteration method as

φn,m+1 −M∆tF−1
[
−(ξ2

kx
+ ξ2

ky
)
(
F
[
3(φn,m)2φn,m+1

]
+ ε2(ξ2

kx
+ ξ2

ky
)F
[
φn,m+1

])]
= φn + M∆tF−1

[
(ξ2

kx
+ ξ2

ky
)F
[
φn + 2(φn,m)3

]]
, (12)

where φn,0 = φn, and we set

φ(1) = φn,m+1

if a relative l2-norm of the consecutive error ‖φn,m+1−φn,m‖2
‖φn,m‖2

is less than a tolerance tol.
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In this paper, the biconjugate gradient (BICG) method is used to solve the system (12), and we
use the following preconditioner P to accelerate the convergence speed of the BICG algorithm:

P = I −M∆t ∆
(

ĀI − ε2∆
)

,

where Ā is the average value of 3(φn,m)2, i.e., Ā = 1
Nx Ny

∑Nx−1
lx=0 ∑

Ny−1
ly=0 3(φn,m

lx ly
)2. The stopping criterion

for the BICG iteration is that the relative residual norm is less than tol.
The second- and third-steps of (5) are implemented analogously.

3.2. Convergence Test

We demonstrate the convergence of the proposed method with an initial condition [11]

φ(x, y, 0) = 0.25 sin(2πx) cos(2πx).

The computational domain is Ω = [0, 1]× [0, 1]. We set M = 10−3, ε = 10−2, and tol = 10−7∆t,
and compute φ(x, y, t) for 0 < t ≤ T = 0.4. The coefficients in (7) are used and the grid size is fixed to
∆x = ∆y = 1/256 which provides enough spatial accuracy. In order to estimate the convergence rate
with respect to ∆t, simulations are performed by varying ∆t = T/2, T/22, . . . , T/26. Figure 1 shows the
relative l2-errors of φ(x, y, T) for various time steps. Here, the error is computed by comparison with a

reference numerical solution using ∆t = T/28, i.e., is defined as ‖φ∆t−φref‖2
‖φref‖2

, where φ∆t is a solution

with a time step ∆t and φref is the reference solution. It is observed that the method is second-order
accurate in time.
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O(∆t2)
second-order
reference line

Figure 1. Relative l2-errors of φ(x, y, T = 0.4) for ∆t = T/2, T/22, . . . , T/26 with ε = 10−2 and
∆x = ∆y = 1/256.

3.3. Energy Stability of the Proposed Method

In order to investigate the energy stability of the proposed method, we take an initial condition as

φ(x, y, 0) = rand(x, y).

The computational domain is Ω = [0, 1]× [0, 1]. Here, rand(x, y) is a random number between
−0.01 and 0.01 at the grid points, and we use M = 1, ε = 10−2, ∆x = ∆y = 1/256, tol = 10−5∆t,
and coefficients in (7). Figure 2 shows the evolution of the energy and its difference with different time
steps. All the energy curves are nonincreasing in time even for sufficiently large time steps. Figure 3
shows the evolution of φ(x, y, t) with ∆t = 2−9.
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Figure 2. Evolution of the energy (left) and its difference (right) with different time steps.

t = 0.5 t = 2 t = 3.5 t = 16
Figure 3. Evolution of φ(x, y, t) with ε = 10−2, ∆x = ∆y = 1/256, and ∆t = 2−9. In each snapshots,
the red, green, and blue regions indicate φ = 1, 0, and −1, respectively.

4. Conclusions

In this work, we investigated energy stability of the second-order (three-stage) SSP-IMEX-RK
method for the CH equation with the polynomial double-well free energy density F(φ) = 1

4 (φ
2 − 1)2.

Under the stability condition, unconditional strong energy stability of the second-order method was
proved theoretically. And, since the nonlinear convex splitting of E(φ) was used compared to the
linear convex splitting presented in [14], the restriction for the convexity of split energies was removed.
We carried out numerical experiments to verify the accuracy and energy stability of the method.

We note that a choice of coefficients of the method may affect a convergence constant. An optimal
choice of coefficients in terms of accuracy can be considered as the scope of future research. And we also
note that there is a difficulty associated with the singularity as φ approaches −1 or 1 for a logarithmic
free energy density F(φ) = θ

2

[
(1 + φ) ln

(
1+φ

2

)
+ (1− φ) ln

(
1−φ

2

)]
+ θc

2 (1− φ2). In order to avoid
this, one can consider to apply a regularization to the logarithmic function [24,25] or develop a
positivity-preserving scheme [26]. An extension of our method to the case of logarithmic free energy
density using such approaches requires further investigation.
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