Two-Parameter Exponentially Fitted Taylor Method for Oscillatory/Periodic Problems
Abstract
:1. Introduction
2. Construction of Method
- :
- The two-parameter exponentially fitted case with the set
3. Error Analysis: Local Truncation Error (LTE)
4. Convergence and Stability Analysis
5. Numerical Results
5.1. Problem 1
5.2. Problem 2
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lambert, J.D. Computational Methods in ODEs; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Simos, T.E. An exponentially-fitted Runge–Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 1998, 115, 1–8. [Google Scholar] [CrossRef]
- Ixaru, L.; Vanden Berghe, G. Exponential Fitting: Mathematics and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherland, 2004. [Google Scholar]
- Liniger, W.S.; Willoughby, R.A. Efficient Integration methods for Stiff System of ODEs. SIAM J. Numerical Anal. 1970, 7, 47–65. [Google Scholar] [CrossRef]
- Berghe, G.V.; Daele, M.V. Exponentially-Fitted Stormer/Verlet methods. J. Numer. Anal. Ind. Appl. Math. (JNAIAM) 2006, 1, 241–255. [Google Scholar]
- Daele, M.V.; Hollevoet, D.; Berghe, G.V. Multiparameter exponentially-fitted methods applied to second-order boundary value problems. In Proceedings of the Seventh International Conference of Numerical Analysis and Applied Mathematics, Rethymno, Crete, Greece, 18–22 September 2009. [Google Scholar]
- Wusu, A.; Olabanjo, O.; Mazzara, M. Exponentially-Fitted Fourth-Derivative Single-Step Obrechkoff Method for Oscillatory/Periodic Problems. Mathematics 2022, 10, 2392. [Google Scholar] [CrossRef]
- Franco, J. Exponentially fitted explicit Runge–Kutta-Nystrom methods. J. Comput. Appl. Math. 2004, 167, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Franco, J.M. An embedded pair of exponentially fitted explicit Runge–Kutta methods. J. Comput. Appl. Math. 2002, 149, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Avdelas, G.; Simos, T.E.; Vigo-Aguiar, J. An embedded exponentially-fitted Runge–Kutta method for the numerical solution of the Schrodinger equation and related periodic initial-value problems. Comput. Phys. Commun. 2000, 131, 52–67. [Google Scholar] [CrossRef]
- Van de Vyver, H. A Runge–Kutta-Nystrom pair for the numerical integration of perturbed oscillators. Comput. Phys. Commun 2005, 167, 129–142. [Google Scholar] [CrossRef]
- Wusu, A. A Two-parameter Family of Exponentially-fitted Obrechkoff Methods for Second-order Boundary Value Problems. J. Res. Rev. Sci. 2020, 7, 28–32. [Google Scholar] [CrossRef]
- Vanden Berghe, G.; Meyer, H.D.; Daele, M.V.; Hecke, T.V. Exponentially-fitted explicit Runge–Kutta methods. Comput. Phys. Commun. 1999, 123, 7–15. [Google Scholar] [CrossRef]
- Paternoster, B. Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on their 70th birthday. Comput. Phys. Commun. 2012, 183, 2499–2512. [Google Scholar] [CrossRef]
- Calvo, M.; Franco, J.; Montijano, J.; Randez, L. Sixth–order symmetric and symplectic exponentially fitted modified runge-kutta methods of gauss type. Comput. Phys. Commun. 2008, 175, 732–744. [Google Scholar] [CrossRef]
- Calvo, M.; Franco, J.; Montijano, J.; Randez, L. Structure preservation of exponentially fitted runge-kutta methods. J. Comput. Appl. Math. 2008, 218, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Calvo, M.; Franco, J.; Montijano, J.; Randez, L. Sixth-order symmetric and symplectic exponentially fitted runge–kutta methods of the gauss type. J. Comput. Appl. Math. 2009, 223, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Vanden Berghe, G.; Van Daele, M. Exponentially-fitted numerov methods. J. Comput. Appl. Math. 2007, 200, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Butcher, J. Numerical Methods for Ordinary Differential Equations; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Lambert, J. Numerical Methods for Ordinary Differential Systems; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Hollevoet, D.; Van Daele, M.; Vanden Berghe, G. The optimal exponentially-fitted Numerov method for solving two-point boundary value problems. J. Comput. Appl. Math. 2009, 230, 260–269. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wusu, A.S.; Olabanjo, O.A.; Mazzara, M. Two-Parameter Exponentially Fitted Taylor Method for Oscillatory/Periodic Problems. Mathematics 2022, 10, 4768. https://doi.org/10.3390/math10244768
Wusu AS, Olabanjo OA, Mazzara M. Two-Parameter Exponentially Fitted Taylor Method for Oscillatory/Periodic Problems. Mathematics. 2022; 10(24):4768. https://doi.org/10.3390/math10244768
Chicago/Turabian StyleWusu, Ashiribo Senapon, Olusola Aanu Olabanjo, and Manuel Mazzara. 2022. "Two-Parameter Exponentially Fitted Taylor Method for Oscillatory/Periodic Problems" Mathematics 10, no. 24: 4768. https://doi.org/10.3390/math10244768
APA StyleWusu, A. S., Olabanjo, O. A., & Mazzara, M. (2022). Two-Parameter Exponentially Fitted Taylor Method for Oscillatory/Periodic Problems. Mathematics, 10(24), 4768. https://doi.org/10.3390/math10244768