Almost Generalized Derivation on Banach Algebras
Abstract
1. Introduction
2. Results and Proofs
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publ.: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Gǎvruta, P. A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Šemrl, P. The functional equation of multiplicative derivation is superstable on standard operator algebras. Integr. Equ. Oper. Theory 1994, 18, 118–122. [Google Scholar] [CrossRef]
- Badora, R. On approximate derivations. Math. Inequal. Appl. 2006, 9, 167–173. [Google Scholar] [CrossRef]
- Czerwik, S. Functional Equations and Inequalities in Several Variables; World Scientific: Singapore, 2002. [Google Scholar]
- Jung, S.-M. Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Jung, S.-M.; Popa, D.; Rassias, T.M. On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Optim. 2014, 59, 165–171. [Google Scholar] [CrossRef]
- Park, C.; Rassias, T.M. Additive functional equations and partial multipliers in C*-algebras. RACSAM 2019, 113, 2261–2275. [Google Scholar] [CrossRef]
- Jin, Y.F.; Park, C.; Rassias, M.T. Hom-derivations in C*-ternary algebras. Acta Math. Sin. Engl. Ser. 2020, 36, 1025–1038. [Google Scholar] [CrossRef]
- Kannappan, P. Functional Equations and Inequalities with Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Chang, I.-S.; Lee, H.-W.; Kim, H.-M. A note on functional inequality and additive mapping. J. Chungcheong Math. Soc. 2022, 35, 149–159. [Google Scholar]
- Bresar, M. On the distance of the composition of two derivations to the generalized derivations. Glasgow Math. J. 1991, 33, 89–93. [Google Scholar] [CrossRef]
- Gordji, M.E. Nearly involutions on Banach algebras; A fixed point approach. Fixed Point Theory 2013, 14, 117–124. [Google Scholar]
- Ara, P.; Mathieu, M. Local Multiplier of C*-Algebras; Springer Monograph in Mathematics; Springer: London, UK, 2003. [Google Scholar]
- Kim, H.-M.; Chang, I.-S. Asymptotic behavior of generalized *-derivations on C*-algebras with applications. J. Math. Phys. 2015, 56, 7. [Google Scholar] [CrossRef]
- Bresar, M.; Mathieu, M. Derivation mappings into the the radical, III. J. Functional Anal. 1995, 133, 21–29. [Google Scholar] [CrossRef][Green Version]
- Daif, M.N. When in a multiplicative derivation additive? Int. J. Math. Math. Sci. 1991, 14, 615–618. [Google Scholar] [CrossRef]
- Daif, M.N.; El-Sayiad, M.S.T. Multiplicative generalized derivations which are additive. Int. East-West J. Math. 1997, 9, 31–37. [Google Scholar]
- Dhara, B.; Ali, S. On multiplicative (generalized)-derivations in prime and semiprime rings. Aequ. Math. 2013, 86, 65–79. [Google Scholar] [CrossRef]
- Goldmann, H.; Šemrl, P. Multiplicative derivation on C(X). Monatsh. Math. 1996, 121, 189–196. [Google Scholar] [CrossRef]
- Martidale, W.S., III. When are multiplicative maps additive. Proc. Am. Math. Soc. 1969, 21, 695–698. [Google Scholar] [CrossRef]
- Sanduh, G.H.; Camci, D.K. Some results on prime rings with multiplicative derivations. Turk. J. Math. 2020, 44, 1401–1411. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.-H.; Chang, I.-S.; Kim, H.-M. Almost Generalized Derivation on Banach Algebras. Mathematics 2022, 10, 4754. https://doi.org/10.3390/math10244754
Bae J-H, Chang I-S, Kim H-M. Almost Generalized Derivation on Banach Algebras. Mathematics. 2022; 10(24):4754. https://doi.org/10.3390/math10244754
Chicago/Turabian StyleBae, Jae-Hyeong, Ick-Soon Chang, and Hark-Mahn Kim. 2022. "Almost Generalized Derivation on Banach Algebras" Mathematics 10, no. 24: 4754. https://doi.org/10.3390/math10244754
APA StyleBae, J.-H., Chang, I.-S., & Kim, H.-M. (2022). Almost Generalized Derivation on Banach Algebras. Mathematics, 10(24), 4754. https://doi.org/10.3390/math10244754