Personalizing Hybrid-Based Dialogue Agents
Abstract
:1. Introduction
2. Related Works
2.1. Dialogue Agents for English
2.2. Dialogue Agents for Other Languages
2.3. Our Previous Work for Russian
3. Dataset
- Person A
- Я медсестра
- (Ja medsestra)
- (I am a nurse)
- Люблю ухаживать за бoльными
- (Ljublju uhazhivat’ za bol’nymi)
- (I love taking care of patients)
- Мнoгo читаю
- (Mnogo chitaju)
- (I read a lot)
- Люблю путешествoвать
- (Ljublju puteshestvovat’)
- (I love to travel)
- Увлекаюсь цветoвoдствoм
- (Uvlekajus’ cvetovodstvom)
- (My hobby is gardening)
- Person B
- Я управляющая
- (Ja upravljajushhaja)
- (I am a manager)
- Есть семья
- (Est’ sem’ja)
- (I have a family)
- Люблю живoтных
- (Ljublju zhivotnyh)
- (I love animals)
- Мнoгo читаю
- (Mnogo chitaju)
- (I read a lot)
- Отдыхаю на даче
- (Otdyhaju na dache)
- (I take rest at my country house)
- Dialogue
- A: Привет, как дела?
- (Privet, kak dela?)
- (Hello, how are you?)
- B: Привет
- (Privet)
- (Hi)
- B: Тебя как зoвут
- (Tebja kak zovut)
- (What is your name?)
- B: Меня Оля
- (Menja Olja)
- (I am Olya)
- A: Чем занимаешься, я сейчас oтдыхаю с семьёй, а ты
- (Chem zanimaesh’sja, ja sejchas otdyhaju s sem’joj, a ty)
- (What are you doing, I’m on holiday with my family, what about you?)
- A: Виктoрия
- (Viktorija)
- (Victoria)
- B: Я рабoтаю в бoльнице. Я медсестра. Сейчас мoя смена. Пoка передышка, мoгу oбщаться
- (Ja rabotaju v bol’nice. Ja medsestra. Sejchas moja smena. Poka peredyshka, mogu obshhat’sja)
- (I work in a hospital. I am a nurse. Now is my shift. Having a break now, so I can chat)
- B: Семья тo бoльшая? Шумнo у вас?
- (Sem’ja to bol’shaja? Shumno u vas?)
- (Is the family big? Is it noisy?)
- A: Знаешь, пoсле утoмительнoй рабoты я рабoтаю управляющей oтеля oчень хoчется на прирoду и пoчитать, чтo нибудь
- (Znaesh’, posle utomitel’noj raboty ja rabotaju upravljajushhej otelja ochen’ hochetsja na prirodu i pochitat’, chto nibud’)
- (You know, after a tedious job, I work as a hotel manager, I really want to go to nature and read something)
- B: Я тoже читать люблю ... и цветы развoдить мне тoже нравится
- (Ja tozhe chitat’ ljublju ... i cvety razvodit’ mne tozhe nravitsja)
- (I also like to read ... and I also like to grow flowers)
- B: Чтo читаете
- (Chto chitaete)
- (What are you reading?)
- A: Семья oчень бoльшая 18 челoвек и куча любимых живoтных
- (Sem’ja ochen’ bol’shaja 18 chelovek i kucha ljubimyh zhivotnyh)
- (Very large family of 18 people and a lot of pets)
- A: А читаю Фауст Гёте, уже в десятый раз ... у меня здесь oдна книга
- (A chitaju Faust Gjote, uzhe v desjatyj raz ... u menja zdes’ odna kniga)
- (I’m reading Goethe’s Faust for the tenth time ... I only have one book here)
4. Methods
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Turing, A.M. Computing machinery and intelligence-AM Turing. Mind 1950, 59, 433. [Google Scholar] [CrossRef]
- Bogoradnikova, D.; Makhnytkina, O.; Matveev, A.; Zakharova, A.; Akulov, A. Multilingual Sentiment Analysis and Toxicity Detection for Text Messages in Russian. In Proceedings of the 2021 29th Conference of Open Innovations Association (FRUCT), Tampere, Finland, 12–14 May 2021; pp. 55–64. [Google Scholar] [CrossRef]
- Makhnytkina, O.; Matveev, A.; Bogoradnikova, D.; Lizunova, I.; Maltseva, A.; Shilkina, N. Detection of Toxic Language in Short Text Messages. In Proceedings of the International Conference on Speech and Computer, St. Petersburg, Russia, 7–9 October 2020; Karpov, A., Potapova, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 315–325. [Google Scholar]
- Mairesse, F.; Walker, M. Automatic recognition of personality in conversation. In Proceedings of the Human Language Technology Conference of the NAACL, New York, NY, USA, 4–9 June 2006. [Google Scholar] [CrossRef] [Green Version]
- Mairesse, F.; Walker, M. PERSONAGE: Personality generation for dialogue. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic, 23–30 June 2007. [Google Scholar]
- Li, J.; Galley, M.; Brockett, C.; Spithourakis, G.P.; Gao, J.; Dolan, B. A persona-based neural conversation model. arXiv 2016, arXiv:1603.06155. [Google Scholar]
- Kottur, S.; Wang, X.; Carvalho, V.R. Exploring personalized neural conversational models. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017. [Google Scholar] [CrossRef] [Green Version]
- Qian, Q.; Huang, M.; Zhao, H.; Xu, J.; Zhu, X. Assigning personality/profile to a chatting machine for coherent conversation generation. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Dinan, E.; Urbanek, J.; Szlam, A.; Kiela, D.; Weston, J. Personalizing dialogue agents: I have a dog, do you have pets too? arXiv 2018, arXiv:1801.07243. [Google Scholar]
- Wu, Y.; Ma, X.; Yang, D. Personalized Response Generation via Generative Split Memory Network. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 6–11 June 2021; pp. 1956–1970. [Google Scholar] [CrossRef]
- Sordoni, A.; Galley, M.; Auli, M.; Brockett, C.; Ji, Y.; Mitchell, M.; Nie, J.Y.; Gao, J.; Dolan, B. A neural network approach to context-sensitive generation of conversational responses. arXiv 2015, arXiv:1506.06714. [Google Scholar]
- Song, H.; Zhang, W.N.; Hu, J.; Liu, T. Generating persona consistent dialogues by exploiting natural language inference. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Y.; Chen, B.; LOU, J.G.; Chen, Z.; Zhou, B.; Zhang, D. You Impress Me: Dialogue Generation via Mutual Persona Perception. arXiv 2020, arXiv:2004.05388. [Google Scholar]
- Lin, Z.; Liu, Z.; Winata, G.I.; Cahyawijaya, S.; Madotto, A.; Bang, Y.; Ishii, E.; Fung, P. XPersona: Evaluating Multilingual Personalized Chatbot. arXiv 2021, arXiv:2003.07568. [Google Scholar]
- Kim, H.; Kim, B.; Kim, G. Will I sound like me? Improving persona consistency in dialogues through pragmatic self-consciousness. arXiv 2020, arXiv:2004.05816. [Google Scholar]
- Bao, S.; He, H.; Wang, F.; Wu, H.; Wang, H. PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable. arXiv 2020, arXiv:1910.07931. [Google Scholar]
- Madotto, A.; Lin, Z.; Bang, Y.; Fung, P. The Adapter-Bot: All-In-One Controllable Conversational Model. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar] [CrossRef]
- Roller, S.; Dinan, E.; Goyal, N.; Ju, D.; Williamson, M.; Liu, Y.; Xu, J.; Ott, M.; Shuster, K.; Smith, E.M.; et al. Recipes for building an open-domain chatbot. arXiv 2021, arXiv:2004.13637. [Google Scholar]
- Xu, X.; Gou, Z.; Wu, W.; Niu, Z.Y.; Wu, H.; Wang, H.; Wang, S. Long Time No See! Open-Domain Conversation with Long-Term Persona Memory. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, 22–27 May 2022. [Google Scholar]
- Zheng, Y.; Chen, G.; Huang, M.; Liu, S.; Zhu, X. Personalized Dialogue Generation with Diversified Traits. arXiv 2019, arXiv:1901.09672. [Google Scholar]
- Dinan, E.; Logacheva, V.; Malykh, V.; Miller, A.; Shuster, K.; Urbanek, J.; Kiela, D.; Szlam, A.; Serban, I.; Lowe, R.; et al. The Second Conversational Intelligence Challenge (ConvAI2). In The NeurIPS’18 Competition; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Li, X.; Zhong, H.; Guo, Y.; Ma, Y.; Zhu, Y.; Liu, Z.; Dou, Z.; Wen, J.R. Pchatbot: A Large-Scale Dataset for Personalized Chatbot. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual, 11–15 July 2021. [Google Scholar] [CrossRef]
- Toloka. Toloka Persona Chat Rus. Available online: https://toloka.ai/datasets (accessed on 9 November 2022).
- Matveev, A.; Makhnytkina, O.; Matveev, Y.; Svischev, A.; Korobova, P.; Rybin, A.; Akulov, A. Virtual Dialogue Assistant for Remote Exams. Mathematics 2021, 9, 2229. [Google Scholar] [CrossRef]
- Posokhov, P.; Apanasovich, K.; Matveeva, A.; Makhnytkina, O.; Matveev, A. Personalizing Dialogue Agents for Russian: Retrieve and Refine. In Proceedings of the 2022 31st Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 27–29 April 2022; pp. 245–252. [Google Scholar] [CrossRef]
- Makhnytkina, O.; Matveev, A.; Svischev, A.; Korobova, P.; Zubok, D.; Mamaev, N.; Tchirkovskii, A. Conversational Question Generation in Russian. In Proceedings of the 2020 27th Conference of Open Innovations Association (FRUCT), Trento, Italy, 7–9 September 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Kulikov, I.; Miller, A.H.; Cho, K.; Weston, J. Importance of a Search Strategy in Neural Dialogue Modelling. arXiv 2018, arXiv:1811.00907. [Google Scholar]
- Yavuz, S.; Rastogi, A.; Chao, G.L.; Hakkani-Tür, D. DEEPCOPY: Grounded response generation with hierarchical pointer networks. arXiv 2019, arXiv:1908.10731. [Google Scholar]
- Wolf, T.; Sanh, V.; Chaumond, J.; Delangue, C. TransferTransfo: A Transfer Learning Approach for Neural Network Based Conversational Agents. arXiv 2019, arXiv:1901.08149. [Google Scholar]
- Li, P. An Empirical Investigation of Pre-Trained Transformer Language Models for Open-Domain Dialogue Generation. arXiv 2020, arXiv:2003.04195. [Google Scholar]
- Madotto, A.; Lin, Z.; Wu, C.S.; Fung, P. Personalizing dialogue agents via meta-learning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020. [Google Scholar] [CrossRef] [Green Version]
- Mazaré, P.E.; Humeau, S.; Raison, M.; Bordes, A. Training millions of personalized dialogue agents. arXiv 2018, arXiv:1809.01984. [Google Scholar]
- Cao, Y.; Bi, W.; Fang, M.; Shi, S.; Tao, D. A Model-Agnostic Data Manipulation Method for Persona-based Dialogue Generation. arXiv 2022, arXiv:2204.09867. [Google Scholar]
- Song, H.; Wang, Y.; Zhang, K.; Zhang, W.N.; Liu, T. BoB: BERT over BERT for training persona-based dialogue models from limited personalized data. arXiv 2021, arXiv:2106.06169. [Google Scholar]
- Zheng, Y.; Zhang, R.; Mao, X.; Huang, M. A Pre-Training based personalized dialogue generation model with persona-sparse data. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar] [CrossRef]
- Gu, J.C.; Liu, H.; Ling, Z.H.; Liu, Q.; Chen, Z.; Zhu, X. Partner Matters! An Empirical Study on Fusing Personas for Personalized Response Selection in Retrieval-Based Chatbots. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual, 11–15 July 2021. [Google Scholar] [CrossRef]
- Humeau, S.; Shuster, K.; Lachaux, M.A.; Weston, J. Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring. arXiv 2019, arXiv:1905.01969. [Google Scholar]
- Kasahara, T.; Kawahara, D.; Tung, N.; Li, S.; Shinzato, K.; Sato, T. Building a Personalized Dialogue System with Prompt-Tuning. arXiv 2022, arXiv:2206.05399. [Google Scholar]
- Das, S.; Saha, S.; Srihari, R.K. Using Multi-Encoder Fusion Strategies to Improve Personalized Response Selection. arXiv 2022, arXiv:2208.09601. [Google Scholar]
- Bao, S.; He, H.; Wang, F.; Wu, H.; Wang, H.; Wu, W.; Guo, Z.; Liu, Z.; Xu, X. PLATO-2: Towards Building an Open-Domain Chatbot via Curriculum Learning. arXiv 2020, arXiv:2006.16779. [Google Scholar]
- Sun, Y.; Wang, S.; Li, Y.; Feng, S.; Tian, H.; Wu, H.; Wang, H. ERNIE 2.0: A Continual Pre-training Framework for Language Understanding. arXiv 2019, arXiv:1907.12412. [Google Scholar] [CrossRef]
- Kim, Y. Convolutional Neural Networks for Sentence Classification. arXiv 2014, arXiv:1408.5882. [Google Scholar]
- Sugiyama, H.; Mizukami, M.; Arimoto, T.; Narimatsu, H.; Chiba, Y.; Nakajima, H.; Meguro, T. Empirical Analysis of Training Strategies of Transformer-based Japanese Chit-chat Systems. arXiv 2021, arXiv:2109.05217. [Google Scholar]
- Posokhov, P.; Matveeva, A.; Makhnytkina, O.; Matveev, A.; Matveev, Y. Personalizing Retrieval-Based Dialogue Agents. In Proceedings of the International Conference on Speech and Computer, Gurugram/New Delhi, India, 14–16 November 2022; Prasanna, S.R.M., Karpov, A., Samudravijaya, K., Agrawal, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 554–566. [Google Scholar]
- Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016. [Google Scholar]
- Huang, L.; Zhao, K.; Ma, M. When to finish? Optimal Beam Search for Neural Text Generation (modulo beam size). In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017. [Google Scholar]
- Zhao, X.; Wu, W.; Xu, C.; Tao, C.; Zhao, D.; Yan, R. Knowledge-grounded dialogue generation with pre-trained language models. arXiv 2020, arXiv:2010.08824. [Google Scholar]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Philadelphia PA, USA, 7–12 July 2002; Association for Computational Linguistics: Philadelphia, PA, USA, 2002; pp. 311–318. [Google Scholar] [CrossRef]
Dataset | #Dialogues | Language | Source | Personalized Info |
---|---|---|---|---|
PERSONA-CHAT [9] | 10,981 | English | Crowdsourcing | Persona descriptions up to five sentences |
ConvAI2 [21] | 4529 | English | Crowdsourcing | Persona descriptions up to five sentences |
DuLeMon [19] | 27,501 | Chinese | Crowdsourcing | Persona descriptions up to five sentences |
Personality Assignment Dataset [8] | 9,697,651 | Chinese | Key-value pair profile | |
PchatbotW [22] | 139,448,339 | Chinese | User ID & Timestamp | |
PchatbotL [22] | 59,427,457 | Chinese | Judicial Forums | User ID & Timestamp |
Toloka Persona Chat Rus [23] | 10,000 | Russian | Crowdsourcing | Persona description fixed number of five sentences |
Model | Batch | Maxlen | Optimizer |
---|---|---|---|
Retrieval | 86 | context: 128 candidate: 64 | AdamW, 30 epoch, warmup: 1000 |
Generative | 32 | 256 | AdamW, 3 epoch, warmup: 5000 |
Learning Rate | R1@86 | mrr@86 | Cross-Entropy |
---|---|---|---|
dotprod, one bert encoder | |||
1 × 10 | 0.29 | 0.47 | 3.39 |
2 × 10 | 0.30 | 0.48 | 3.10 |
3 × 10 | 0.31 | 0.49 | 2.96 |
4 × 10 | 0.32 | 0.49 | 2.96 |
5 × 10 | 0.33 | 0.50 | 2.85 |
6 × 10 | 0.33 | 0.49 | 2.82 |
7 × 10 | 0.32 | 0.49 | 2.83 |
8 × 10 | 0.33 | 0.49 | 2.84 |
9 × 10 | 0.33 | 0.49 | 2.86 |
10 × cossim, two bert encoders | |||
5 × 10 | 0.38 | 0.53 | 2.33 |
10 × cossim, one t5 encoder | |||
5 × 10 | 0.42 | 0.56 | 2.15 |
Model | Perplexity | BLEU |
---|---|---|
DialoGPT | 2.15 | 0.231 |
Retrieval and Personifier | 3.96 | 0.019 |
Generate and Retrieve | 3.89 | 0.020 |
Retrieve and Refine | 2.99 | 0.116 |
Retrieve and Refine and KG | 1.64 | 0.231 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveev, Y.; Makhnytkina, O.; Posokhov, P.; Matveev, A.; Skrylnikov, S. Personalizing Hybrid-Based Dialogue Agents. Mathematics 2022, 10, 4657. https://doi.org/10.3390/math10244657
Matveev Y, Makhnytkina O, Posokhov P, Matveev A, Skrylnikov S. Personalizing Hybrid-Based Dialogue Agents. Mathematics. 2022; 10(24):4657. https://doi.org/10.3390/math10244657
Chicago/Turabian StyleMatveev, Yuri, Olesia Makhnytkina, Pavel Posokhov, Anton Matveev, and Stepan Skrylnikov. 2022. "Personalizing Hybrid-Based Dialogue Agents" Mathematics 10, no. 24: 4657. https://doi.org/10.3390/math10244657
APA StyleMatveev, Y., Makhnytkina, O., Posokhov, P., Matveev, A., & Skrylnikov, S. (2022). Personalizing Hybrid-Based Dialogue Agents. Mathematics, 10(24), 4657. https://doi.org/10.3390/math10244657