Regularity for Quasi-Linear p-Laplacian Type Non-Homogeneous Equations in the Heisenberg Group
Abstract
:1. Introduction
Ideas of the Proofs
2. Preliminaries
2.1. Notations
2.2. The Heisenberg Group
3. Comparison Estimates
4. Proof of Theorem 1
5. Proof of Theorem 2
6. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.C. A new proof of local C1,α-regularity for solutions of certain degenerate elliptic p.d.e. J. Differ. Equ. 1982, 45, 356–373. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.L. Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 1983, 32, 849–858. [Google Scholar] [CrossRef]
- Tolksdorf, P. Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 1984, 51, 126–150. [Google Scholar] [CrossRef] [Green Version]
- Uhlenbeck, K.K. Regularity for a class of non-linear elliptic systems. Acta Math. 1977, 138, 219–240. [Google Scholar] [CrossRef]
- Ural’ceva, N.N. Degenerate quasilinear elliptic systems. Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov. 1968, 7, 184–222. [Google Scholar]
- Domokos, A.; Manfredi, J.J. C1,α-regularity for p-harmonic functions in the Heisenberg group for p near 2. Contemp. Math. 2005, 370, 17–23. [Google Scholar]
- Domokos, A.; Manfredi, J.J. Subelliptic cordes estimates. Proc. Am. Math. Soc. 2005, 133, 1047–1056. [Google Scholar] [CrossRef]
- Manfredi, J.J.; Mingione, G. Regularity results for quasilinear elliptic equations in the Heisenberg group. Math. Ann. 2007, 339, 485–544. [Google Scholar] [CrossRef]
- Mingione, G.; Zatorska-Goldstein, A.; Zhong, X. Gradient regularity for elliptic equations in the Heisenberg group. Adv. Math. 2009, 222, 62–129. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Zhong, X. C1,α-regularity for variational problems in the Heisenberg group. Anal. PDE 2021, 14, 567–594. [Google Scholar] [CrossRef]
- Ricciotti, D. p-Laplace Equation in the Heisenberg Group; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Zhong, X. Regularity for variational problems in the Heisenberg group. arXiv 2017, arXiv:1711.03284. [Google Scholar]
- Duzaar, F.; Mingione, G. Gradient estimates via linear and nonlinear potentials. J. Funct. Anal. 2010, 259, 22–1236. [Google Scholar] [CrossRef]
- Duzaar, F.; Mingione, G. Gradient estimates via non-linear potentials. Am. J. Math. 2011, 133, 1093–1149. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Sire, Y. Regularity of inhomogeneous quasi-linear equations on the Heisenberg group. Anal. Theory Appl. 2021, 37, 1672–4070. [Google Scholar]
- Chu, J.Y.; Wei, Z.W.; Wu, Q.Y. Lp and BMO bounds for weighted Hardy operators on the Heisenberg group. J. Inequal. Appl. 2016, 282, 12. [Google Scholar]
- Folland, G.B.; Stein, E.M. Estimates for the b complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 1974, 27, 429–522. [Google Scholar]
- Leonardi, G.P.; Masnou, S. On the isoperimetric problem in the Heisenberg group . Ann. Mat. Pura Appl. 2005, 184, 533–553. [Google Scholar] [CrossRef] [Green Version]
- Pucci, P.; Temperini, L. Existence for (p,q) critical systems in the Heisenberg group. Adv. Nonlinear Anal. 2020, 9, 895–922. [Google Scholar] [CrossRef]
- Pucci, P.; Temperini, L. Entire solutions for some critical equations in the Heisenberg group. Opuscula Math. 2022, 42, 279–303. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Razani, A.; Safari, F. Existence of positive radial solutions for a problem involving weighted Heisenberg p(·)-Laplacian operator. AIMS Math. 2022, 8, 404–422. [Google Scholar] [CrossRef]
- Safari, F.; Razani, A. Existence of radially positive solutions for Neumann problem on the Heisenberg group. Bound. Value Probl. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Safari, F.; Razani, A. Existence of radial solutions for a weighted p-biharmonic problem with Navier boundary condition on the Heisenberg group. Math. Slovaca 2022, 72, 677–692. [Google Scholar] [CrossRef]
- Safari, F.; Razani, A. Nonlinear nonhomogeneous Neumann problem on the Heisenberg group. Appl. Anal. 2022, 101, 2387–2400. [Google Scholar] [CrossRef]
- Hamburger, C. Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. 1992, 431, 7–64. [Google Scholar]
- Capogna, L.; Danielli, D.; Pauls, S.D.; Tyson, J.T. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem. In Progress in Mathematics; Birkhäuser Verlag: Basel, Switzerland, 2007; pp. 16–223. [Google Scholar]
- Giusti, E. Direct Methods in the Calculus of Variations; World Scientific Publishing: Co., Inc.: River Edge, NJ, USA, 2003. [Google Scholar]
- Zatorska-Goldstein, A. Very weak solutions of nonlinear subelliptic equations. Ann. Acad. Sci. Fenn. Math. 2005, 30, 407–436. [Google Scholar]
- Citti, G.; Mukherjee, S. Regularity of quasi-linear equations with Hörmander vector fields of Step two. Adv. Math. 2022, 408, 108593. [Google Scholar] [CrossRef]
- Nagel, A.; Stein, E.M. Lectures on pseudodifferential operators: Regularity theorems and applications to nonelliptic problems. In Mathematical Notes; Princeton University Press: Princeton, NJ, USA; University of Tokyo Press: Tokyo, Japan, 1979; Volume 24. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C. Regularity for Quasi-Linear p-Laplacian Type Non-Homogeneous Equations in the Heisenberg Group. Mathematics 2022, 10, 4129. https://doi.org/10.3390/math10214129
Yu C. Regularity for Quasi-Linear p-Laplacian Type Non-Homogeneous Equations in the Heisenberg Group. Mathematics. 2022; 10(21):4129. https://doi.org/10.3390/math10214129
Chicago/Turabian StyleYu, Chengwei. 2022. "Regularity for Quasi-Linear p-Laplacian Type Non-Homogeneous Equations in the Heisenberg Group" Mathematics 10, no. 21: 4129. https://doi.org/10.3390/math10214129