Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives
Abstract
1. Introduction
2. Preliminaries
3. Inhomogeneous Case
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Qian, D.; Chen, Y.Q. On Riemann-Liouville and Caputo Derivatives. Discret. Dyn. Nat. Soc. 2011, 2011, 562494. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: London, UK, 1999. [Google Scholar]
- Nigmatullin, R.R. The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi B 1986, 133, 425–430. [Google Scholar] [CrossRef]
- Tuan, N.H.; Caraballo, T. On initial and terminal value problems for fractional nonclassical diffusion equations. Proc. Am. Math. Soc. 2021, 149, 143–161. [Google Scholar] [CrossRef]
- Kou, S. Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. Ann. Appl. Stat. 2008, 2, 501–535. [Google Scholar] [CrossRef]
- Zhao, C.; Caraballo, T.; Łukaszewicz, G. Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations. J. Differ. Equ. 2021, 281, 1–32. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Caraballo, T. Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. J. Differ. Equ. 2022, 317, 474–494. [Google Scholar] [CrossRef]
- Tuan, N.H.; Nguyen, A.T.; Yang, C. Global well-posedness for fractional Sobolev-Galpern type equations. Discret. Contin. Dyn. Syst. 2022, 42, 2637–2665. [Google Scholar]
- Tuan, N.A.; Tuan, N.H.; Yang, C. On Cauchy problem for fractional parabolic-elliptic Keller-Segel model. Adv. Nonlinear Anal. 2023, 12, 97–116. [Google Scholar]
- Tuan, N.H.; Au, V.V.; Nguyen, A.T. Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces. Arch. Math. 2022, 118, 305–314. [Google Scholar] [CrossRef]
- Tuan, N.H.; Foondun, M.; Thach, T.N.; Wang, R. On backward problems for stochastic fractional reaction equations with standard and fractional Brownian motion. Bull. Sci. Math. 2022, 179, 103158. [Google Scholar] [CrossRef]
- Tuan, N.A.; Caraballo, T.; Tuan, N.H. On the initial value problem for a class of nonlinear biharmonic equation with time-fractional derivative. Proc. R. Soc. Edinb. Sect. A 2022, 152, 989–1031. [Google Scholar] [CrossRef]
- Caraballo, T.; Mchiri, L.; Rhaima, M. Ulam–Hyers–Rassias stability of neutral stochastic functional differential equations. Stochastics 2022, 94, 959–971. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Z.; Caraballo, T. Mild Solutions to Time Fractional Stochastic 2D-Stokes Equations with Bounded and Unbounded Delay. J. Dyn. Differ. Equ. 2022, 34, 583–603. [Google Scholar] [CrossRef]
- Caraballo, T.; Guo, B.; Tuan, N.H.; Wang, R. Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains. Proc. R. Soc. Edinb. Sect. A 2021, 151, 1700–1730. [Google Scholar] [CrossRef]
- Bao, N.T.; Caraballo, T.; Tuan, N.H.; Zhou, Y. Existence and regularity results for terminal value problem for nonlinear fractional wave equations. Nonlinearity 2021, 34, 1448–1503. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Z.; Caraballo, T. Non-autonomous nonlocal partial differential equations with delay and memory. J. Differ. Equ. 2021, 270, 505–546. [Google Scholar] [CrossRef]
- Caraballo, T.; Ezzine, F.; Hammami, M.A.; Mchiri, L. Practical stability with respect to a part of variables of stochastic differential equations. Stochastics 2021, 93, 647–664. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Caraballo, T. Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J. Differ. Equ. 2020, 269, 467–494. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Luu, V.C.H.; Erdal, K.; Jagdev, S.; Ho, D.B.; Nguyen, H.C. Fractional order continuity of a time semi-linear fractional diffusion-wave system. Alex. Eng. J. 2020, 59, 4959–4968. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Le, N.H.; Dumitru, B.; Nguyen, H.C. Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Adv. Differ. Equ. 2020, 2020, 1–23. [Google Scholar] [CrossRef]
- Tuan, N.H.; Phuong, N.D.; Thach, T.N. New well-posedness results for stochastic delay Rayleigh-Stokes equations. Discret. Contin. Dyn. Syst. Ser. B 2023, 28, 347. [Google Scholar] [CrossRef]
- Wanga, X.; Wanga, L.; Zeng, Q. Fractional differential equations with integral boundary conditions. J. Nonlinear Sci. Appl. 2015, 8, 309–314. [Google Scholar] [CrossRef]
- Zhai, C.; Jiang, R. Unique solutions for a new coupled system of fractional differential equations. Adv. Differ. Equ. 2018, 2018, 1. [Google Scholar] [CrossRef]
- Kou, C.; Zhou, H.; Li, C. Existence and continuation theorems of Riemann-Liouville type fractional differential equations. Int. J. Bifurc. Chaos Appl. Sci. Engrgy 2012, 22, 1250077. [Google Scholar] [CrossRef]
- Ngoc, T.B.; Zhou, Y.; O’Regan, D.; Tuan, N.H. On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives. Appl. Math. Lett. 2020, 106, 106373. [Google Scholar] [CrossRef]
- Luc, N.H. Remarks on a 1-D nonlocal in time fractional diffusion equation with inhomogeneous sources. Bull. Math. Anal. Appl. 2021, 13, 1–12. Available online: http://www.bmathaa.org (accessed on 30 September 2022).
- Chen, H.; Stynes, M. Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 2021, 41, 974–997. [Google Scholar] [CrossRef]
- Tuan, N.H.; Huynh, L.N.; Ngoc, T.B.; Zhou, Y. On a backward problem for nonlinear fractional diffusion equations. Appl. Math. Lett. 2019, 92, 76–84. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Vo, V.A.; Xu, R.; Renhai, W. On the initial and terminal value problem for a class of semilinear strongly material damped plate equations. J. Math. Anal. Appl. 2020, 492, 124481. [Google Scholar] [CrossRef]
- Sakamoto, K.; Yamamoto, M. Initial value/boudary value problems for fractional diffusion- wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Dinh, L.; Donal, O. Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives. Mathematics 2022, 10, 4026. https://doi.org/10.3390/math10214026
Le Dinh L, Donal O. Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives. Mathematics. 2022; 10(21):4026. https://doi.org/10.3390/math10214026
Chicago/Turabian StyleLe Dinh, Long, and O’regan Donal. 2022. "Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives" Mathematics 10, no. 21: 4026. https://doi.org/10.3390/math10214026
APA StyleLe Dinh, L., & Donal, O. (2022). Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives. Mathematics, 10(21), 4026. https://doi.org/10.3390/math10214026