Multifractal Characteristics on Temporal Maximum of Air Pollution Series
Abstract
:1. Introduction
2. Study Area and Data
3. Multifractal Spectrum Analysis
4. Multifractality Characteristics
5. Results and Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature | |
Asymmetry index | |
Estimated polynomial coefficient | |
Generalized Hurst exponent | |
Mean of the series | |
m-th polynomial order in segment v | |
Non-overlapping segments with a length s | |
Observed data | |
q-order fluctuation function | |
Rényi exponent | |
Signal profile series | |
Singularity spectrum | |
Variance for segment v | |
Greek symbols | |
Lipschitz–Hölder exponent | |
Maxima position in the singularity spectrum | |
Maximum value of the Hölder exponent | |
Minimum value of the Hölder exponent | |
Left-hand branch of the singularity spectrum curve | |
Right-hand branch of the singularity spectrum curve | |
Spectrum width | |
Acronyms | |
API | Air pollution index |
CO | Carbon monoxide |
MFDFA | Multifractal detrended fluctuation analysis |
NO2 | Nitrogen dioxide |
O3 | Ozone |
SO2 | Sulfur dioxide |
PM10 | Suspended particulate matter with size less than 10 microns |
Subscripts | |
s | Length of segment |
q | Fluctuation order |
Superscript | |
v | Segment of the series |
m | Polynomial order |
References
- Bhat, T.H.; Jiawen, G.; Farzaneh, H. Air Pollution Health Risk Assessment (AP-HRA), Principles and Applications. Int. J. Environ. Res. Public Health 2021, 18, 1935. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Chen, Z. Cost of economic growth: Air pollution and health expenditure. Sci. Total Environ. 2021, 755, 142543. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Y.; Wang, F. Air pollution effects of industrial transformation in the Yangtze River Delta from the perspective of spatial spillover. J. Geogr. Sci. 2022, 32, 156–176. [Google Scholar] [CrossRef]
- Zeng, J.; Wen, Y.; Bi, C.; Feiock, R. Effect of tourism development on urban air pollution in China: The moderating role of tourism infrastructure. J. Clean. Prod. 2021, 280, 124397. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, R.; Yao, X. Air pollution and environmental information disclosure: An empirical study based on heavy polluting industries. J. Clean. Prod. 2021, 278, 124313. [Google Scholar] [CrossRef]
- Cariolet, J.-M.; Colombert, M.; Vuillet, M.; Diab, Y. Assessing the resilience of urban areas to traffic-related air pollution: Application in Greater Paris. Sci. Total Environ. 2018, 615, 588–596. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Shi, Y.; Marvin, S.; Zheng, Y.; Xia, G. Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustain. Cities Soc. 2020, 54, 101941. [Google Scholar] [CrossRef]
- Afroz, R.; Hassan, M.N.; Ibrahim, N.A. Review of air pollution and health impacts in Malaysia. Environ. Res. 2003, 92, 71–77. [Google Scholar] [CrossRef]
- Gocheva-Ilieva, S.G.; Ivanov, A.V.; Voynikova, D.S.; Boyadzhiev, D.T. Time series analysis and forecasting for air pollution in small urban area: An SARIMA and factor analysis approach. Stoch. Environ. Res. Risk Assess. 2014, 28, 1045–1060. [Google Scholar] [CrossRef]
- Masseran, N. Modeling fluctuation of PM10 data with existence of volatility effect. Environ. Eng. Sci. 2017, 34, 816–827. [Google Scholar] [CrossRef]
- Masseran, N.; Hussain, S.I. Copula modelling on the dynamic dependence structure of multiple air pollutant variables. Mathematics 2020, 8, 1910. [Google Scholar] [CrossRef]
- Liu, H.; Yan, G.; Duan, Z.; Chen, C. Intelligent modeling strategies for forecasting air quality time series: A review. Appl. Soft Comput. 2021, 102, 106957. [Google Scholar] [CrossRef]
- Ravindra, K.; Rattan, P.; Mor, S.; Aggarwal, A.N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 2019, 132, 104987. [Google Scholar] [CrossRef] [PubMed]
- Roca-Pardiñas, J.; Ordóñez, C. Predicting pollution incidents through semiparametric quantile regression models. Stoch. Environ. Res. Risk Assess. 2019, 33, 673–685. [Google Scholar] [CrossRef]
- Masseran, N. Modeling the characteristics of unhealthy air pollution events: A copula approach. Int. J. Environ. Res. Public Health 2021, 18, 8751. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Liébana, J.; Ruiz-Medina, M.D. Prediction of air pollutants PM10 by ARBX(1) processes. Stoch. Environ. Res. Risk Assess. 2019, 33, 1721–1736. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, X.; Cheng, W.; Ji, Q.; Duan, Q.; Han, Y. Statistical Inference of dynamic conditional Generalized Pareto Distribution with weather and air quality factors. Mathematics 2022, 10, 1433. [Google Scholar] [CrossRef]
- Jiang, P.; Li, C.; Li, R.; Yang, H. An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation. Knowl. Based. Syst. 2019, 164, 174–192. [Google Scholar] [CrossRef]
- Masseran, N. Power-law behaviors of the duration size of unhealthy air pollution events. Stoch. Environ. Res. Risk Assess. 2021, 35, 1499–1508. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.-J.; Chang, L.-C.; Kao, I.-F.; Wang, Y.-S. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2019, 209, 134–145. [Google Scholar] [CrossRef]
- Al-Janabi, S.; Mohammad, M.; Al-Sultan, A. A new method for prediction of air pollution based on intelligent computation. Soft Comput. 2020, 24, 661–680. [Google Scholar] [CrossRef]
- Sayeed, A.; Choi, Y.; Eslami, E.; Lops, Y.; Roy, A.; Jung, J. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Netw. 2020, 121, 396–408. [Google Scholar] [CrossRef]
- Saez, M.; Barceló, M.A. Spatial prediction of air pollution levels using a hierarchical Bayesian spatiotemporal model in Catalonia, Spain. Environ. Model. Softw. 2002, 151, 105369. [Google Scholar] [CrossRef]
- Ding, W.; Leung, Y.; Zhang, J.; Fung, T. A hierarchical Bayesian model for the analysis of space-time air pollutant concentrations and an application to air pollution analysis in Northern China. Stoch. Environ. Res. Risk Assess. 2021, 35, 2237–2271. [Google Scholar] [CrossRef]
- Liu, C.-C.; Lin, T.-C.; Yuan, K.-Y.; Chiueh, P.-T. Spatio-temporal prediction and factor identification of urban air quality using support vector machine. Urban Clim. 2022, 41, 101055. [Google Scholar] [CrossRef]
- Gyarmati-Szabó, J.; Bogachev, L.V.; Chen, H. Nonstationary POT modelling of air pollution concentrations: Statistical analysis of the traffic and meteorological impact. Environmetrics 2017, 28, e2449. [Google Scholar] [CrossRef] [Green Version]
- Masseran, N.; Mohd Safari, M.A. Intensity–duration–frequency approach for risk assessment of air pollution events. J. Environ. Manag. 2020, 264, 110429. [Google Scholar] [CrossRef]
- Vettori, S.; Huser, R.; Genton, M.G. Bayesian modeling of air pollution extremes using nested multivariate max-stable processes. Biometrics 2019, 75, 831–841. [Google Scholar] [CrossRef]
- Yadav, M.; Singh, N.K.; Sahu, S.P.; Padhiyar, H. Investigations on air quality of a critically polluted industrial city using multivariate statistical methods: Way forward for future sustainability. Chemosphere 2022, 291, 133024. [Google Scholar] [CrossRef]
- Wang, Q. Multifractal characterization of air polluted time series in China. Phys. A Stat. Mech. Appl. 2019, 514, 167–180. [Google Scholar] [CrossRef]
- Li, X. On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China. Phys. A Stat. Mech. Appl. 2021, 565, 125551. [Google Scholar] [CrossRef] [PubMed]
- Frenzel, S.; Pompe, B. Partial mutual information for coupling analysis of multivariate time series. Phys. Rev. Lett. 2007, 99, 204101. [Google Scholar] [CrossRef] [PubMed]
- Jauregui, M.; Zunino, L.; Lenzi, E.K.; Mendes, R.S.; Ribeiro, H.V. Characterization of time series via Rényi complexity–entropy curves. Phys. A Stat. Mech. Appl. 2018, 498, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Carrizales-Velazquez, C.; Donner, R.V.; Guzmán-Vargas, L. Generalization of Higuchi’s fractal dimension for multifractal analysis of time series with limited length. Nonlinear Dyn. 2022, 108, 417–431. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, B.; Li, H.; Lu, H. Modeling for chaotic time series based on linear and nonlinear framework: Application to wind speed forecasting. Energy 2019, 173, 468–482. [Google Scholar] [CrossRef]
- Zou, Y.; Donner, R.V.; Marwan, N.; Donges, J.F.; Kurths, J. Complex network approaches to nonlinear time series analysis. Phys. Rep. 2019, 787, 1–97. [Google Scholar] [CrossRef]
- Chen-hua, S.; Yi, H.; Ya-ni, Y. An analysis of multifractal characteristics of API time series in Nanjing, China. Phys. A Stat. Mech. Appl. 2016, 451, 171–179. [Google Scholar]
- Liu, Z.; Wang, L.; Zhu, H. A time–scaling property of air pollution indices: A case study of Shanghai, China. Atmos. Pollut. Res. 2015, 6, 886–892. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C.; Shi, K.; Liu, Y. Multifractal detrended cross-correlation analysis on NO, NO2 and O3 concentrations at traffic sites. Phys. A Stat. Mech. Appl. 2018, 502, 605–612. [Google Scholar] [CrossRef]
- Manimaran, P.; Narayana, A.C. Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India. Phys. A Stat. Mech. Appl. 2018, 502, 228–235. [Google Scholar] [CrossRef]
- Cárdenas-Moreno, P.R.; Moreno-Torres, L.R.; Lovallo, M.; Telesca, L.; Ramírez-Rojas, A. Spectral, multifractal and informational analysis of PM10 time series measured in Mexico City Metropolitan Area. Phys. A Stat. Mech. Appl. 2021, 565, 125545. [Google Scholar] [CrossRef]
- Masseran, N. Multifractal characteristics on multiple pollution variables in Malaysia. Bull. Malays. Math. Sci. Soc. 2022, 45, 325–344. [Google Scholar] [CrossRef]
- Plocoste, T.; Pavón-Domínguez, P. Temporal scaling study of particulate matter (PM10) and solar radiation influences on air temperature in the Caribbean basin using a 3D joint multifractal analysis. Atmos. Environ. 2020, 222, 117115. [Google Scholar] [CrossRef]
- Wang, J.; Shao, W.; Kim, J. Multifractal detrended cross-correlation analysis between respiratory diseases and haze in South Korea. Chaos Solitons Fractals 2020, 135, 109781. [Google Scholar] [CrossRef]
- Wang, J.; Kim, J.; Shao, W. Investigation of the implications of “Haze Special Law” on air quality in South Korea. Complexity 2020, 2022, 6193016. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ni, Z.; Ni, L. Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors. Phys. A Stat. Mech. Appl. 2015, 438, 114–123. [Google Scholar] [CrossRef]
- Gin, O.K. Historical Dictionary of Malaysia; Scarecrow Press: Lanham, MD, USA, 2009; pp. 157–158. [Google Scholar]
- Masseran, N.; Safari, M.A.M. Risk assessment of extreme air pollution based on partial duration series: IDF approach. Stoch. Environ. Res. Risk Assess. 2020, 34, 545–559. [Google Scholar] [CrossRef]
- Google. 2019. Available online: https://maps.googleapis.com/maps/api/geocode/json?address=Klang%2CSelangor&key=xxx (accessed on 13 April 2022).
- Department of Environment. A Guide to Air Pollutant Index in Malaysia (API); Ministry of Science, Technology and the Environment: Kuala Lumpur, Malaysia, 1997. Available online: https://aqicn.org/images/aqi-scales/malaysia-api-guide.pdf (accessed on 13 February 2022).
- Masseran, N.; Safari, M.A.M. Mixed POT-BM approach for modeling unhealthy air pollution events. Int. J. Environ. Res. Public Health 2021, 18, 6754. [Google Scholar] [CrossRef]
- Masseran, N. Power-law behaviors of the severity levels of unhealthy air pollution events. Nat. Hazards 2022, 112, 1749–1766. [Google Scholar] [CrossRef]
- Cao, G.; He, L.-Y.; Cao, J. Multifractal Detrended Analysis Method and Its Application in Financial Markets; Springer: Singapore, 2018. [Google Scholar]
- Hou, W.; Feng, G.; Yan, P.; Li, S. Multifractal analysis of the drought area in seven large regions of China from 1961 to 2012. Meteorol. Atmos. Phys. 2018, 130, 459–471. [Google Scholar] [CrossRef]
- da Silva, H.S.; Silva, J.R.S.; Stosic, T. Multifractal analysis of air temperature in Brazil. Phys. A Stat. Mech. Appl. 2020, 549, 124333. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Khondekar, M.H.; Bhattacharjee, A.R. Fractality and singularity in CME linear speed signal: Cycle 23. Chaos Solit. Fractals 2018, 114, 542–550. [Google Scholar] [CrossRef]
- Mali, P.; Manna, S.K.; Mukhopadhyay, A.; Haldar, P.K.; Singh, G. Multifractal analysis of multiparticle emission data in the framework of visibility graph and sandbox algorithm. Phys. A Stat. Mech. Appl. 2018, 493, 253–266. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, X. Nonlinear relationship between money market rate and stock market liquidity in China: A multifractal analysis. PLoS ONE 2021, 16, e0249852. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yuan, N.; Xie, F.; Qi, Y. Understanding long-term persistence and multifractal behaviors in river runoff: A detailed study over eastern China. Phys. A Stat. Mech. Appl. 2019, 533, 122042. [Google Scholar] [CrossRef]
- Adarsh, S.; Nourani, V.; Archana, D.S.; Dharan, D.S. Multifractal description of daily rainfall fields over India. J. Hydrol. 2020, 586, 124913. [Google Scholar] [CrossRef]
- Xie, S.; Bao, Z. Fractal and multifractal properties of geochemical fields. Math. Geol. 2004, 36, 847–864. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, Y.; Li, P. Multifractal behavior of an air pollutant time series and the relevance to the predictability. Environ. Pollut. 2017, 222, 444–457. [Google Scholar] [CrossRef]
- Weerasinghe, R.M.; Pannila, A.S.; Jayananda, M.K.; Sonnadara, D.U.J. Multifractal behavior of wind speed and wind direction. Fractals 2016, 24, 1650003. [Google Scholar] [CrossRef]
- Miloş, L.R.; Haţiegan, C.; Miloş, M.C.; Barna, F.M.; Boțoc, C. Multifractal detrended fluctuation analysis (MF-DFA) of stock market indexes. Empirical evidence from seven central and Eastern European markets. Sustainability 2020, 12, 535. [Google Scholar] [CrossRef]
- Shi, K. Multifractal processes and self-organized criticality of PM2.5 during a typical haze period in chengdu, China. Aerosol Air Qual. Res. 2015, 15, 926–934. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Pan, W.; Lu, W.-Z.; He, H.-D. Multifractal nature of particulate matters (PMs) in Hong Kong urban air. Sci. Total Environ. 2015, 532, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Kwapien, J.; Oswiecimka, P.; Drozdz, S. Components of multifractality in high-frequency stock returns. Phys. A Stat. Mech. Appl. 2005, 350, 466–474. [Google Scholar] [CrossRef]
Variable | Mean | Variance | Min. | Max. | Median | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
Hourly API | 55.735 | 434.448 | 0 | 543 | 54 | 4.738 | 68.370 |
Max. Daily API | 65.530 | 548.758 | 21 | 543 | 61 | 5.561 | 74.658 |
Max. Weekly API | 83.382 | 1129.12 | 40 | 543 | 76 | 5.608 | 55.403 |
Max. Monthly API | 105.861 | 2444.431 | 60 | 543 | 93 | 4.779 | 33.222 |
Duration | ||||||||
---|---|---|---|---|---|---|---|---|
Hourly | 1.322 | 12.746 | 1.511 | 0.189 | 11.235 | 11.424 | −0.967 | −3.779 |
Daily | 0.237 | 1.180 | 0.952 | 0.715 | 0.228 | 0.943 | 0.516 | −1.490 |
Weekly | 0.157 | 1.144 | 0.843 | 0.686 | 0.301 | 0.988 | 0.390 | −1.254 |
Monthly | 0.190 | 0.259 | 0.844 | 0.654 | 0.585 | 1.239 | 0.056 | −1.107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masseran, N. Multifractal Characteristics on Temporal Maximum of Air Pollution Series. Mathematics 2022, 10, 3910. https://doi.org/10.3390/math10203910
Masseran N. Multifractal Characteristics on Temporal Maximum of Air Pollution Series. Mathematics. 2022; 10(20):3910. https://doi.org/10.3390/math10203910
Chicago/Turabian StyleMasseran, Nurulkamal. 2022. "Multifractal Characteristics on Temporal Maximum of Air Pollution Series" Mathematics 10, no. 20: 3910. https://doi.org/10.3390/math10203910