Energy Transfer through a Magnetized Williamson Hybrid Nanofluid Flowing around a Spherical Surface: Numerical Simulation
Abstract
:1. Introduction
2. Problem Description
3. Numerical Techniques
4. Results and Discussion
5. Conclusions
- 1-
- The use of hybrid nanosolids stimulates energy transfer through the host fluid;
- 2-
- The Weissenberg number has a positive effect on temperature and friction drag, while it negatively affects energy transfer and fluid velocity;
- 3-
- Growing the strength of the magnetic field decreases velocity, friction drag, and energy transfer rate but raises temperature;
- 4-
- Increasing the volume fraction of catalyzed nanomaterials (whether for MWCNTs or GO) improves energy transfer, raises the fluid temperature, and reduces friction drag;
- 5-
- In terms of energy transfer rate, the examined hybrid/mono-nano liquids can be arranged in ascending order regardless of the influencing parameter as:
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
a | Radius of spherical shape |
Bo | Magnetic field intensity |
Skin friction | |
Cp | Heat capacity |
Radial distance | |
g | Gravity vector |
Gr | Grashof number |
kf | Thermal conductivity |
M | Magnetic parameter |
Nu | Nusselt number |
Pr | Prandtl number |
Re | Reynold number |
T | Base liquid temperature |
T∞ | Surrounding temperature |
u | component of velocity |
v | component of velocity |
vf | Kinematic viscosity |
We | Weissenberg number |
Thermal diffusivity | |
Thermal expansion | |
Fluid relaxation time | |
Electrical conductivity | |
Temperature | |
Dynamic viscosity | |
Density | |
Volume fraction of nanosolid | |
Wall shear stress | |
Stream transformation | |
Electrical conductivity | |
Subscript | |
f | Host liquid |
Hnf | Hybrid nanoliquid |
nf | Nanoliquid |
Volume fraction of MWCNTs or GO | |
Volume fraction of MoS2 |
References
- Williamson, R.V. The flow of pseudoplastic materials. Ind. Eng. Chem. 1929, 21, 1108–1111. [Google Scholar] [CrossRef]
- Lyubimov, D.; Perminov, A. Motion of a thin oblique layer of a pseudoplastic fluid. J. Eng. Phys. Thermophys. 2002, 75, 920–924. [Google Scholar] [CrossRef]
- Nadeem, S.; Akram, S. Peristaltic flow of a Williamson fluid in an asymmetric channel. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1705–1716. [Google Scholar] [CrossRef]
- Nadeem, S.; Hussain, S. Flow and heat transfer analysis of Williamson nanofluid. Appl. Nanosci. 2014, 4, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Kiyani, M.; Alsaedi, A.; Khan, M.I.; Ahmad, I. Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction. Int. J. Heat Mass Transf. 2018, 127, 422–429. [Google Scholar] [CrossRef]
- Subbarayudu, K.; Suneetha, S.; Reddy, P.B.A. The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge. Propuls. Power Res. 2020, 9, 87–99. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, M.I.; Asghar, Z.; Kadry, S.; Chu, Y.-M.; Khan, W. Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier’s and Fick’s concept. J. Mater. Res. Technol. 2020, 9, 11080–11086. [Google Scholar] [CrossRef]
- Hayat, T.; Bashir, G.; Waqas, M.; Alsaedi, A. MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. J. Mol. Liq. 2016, 223, 836–844. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab. (ANL): Argonne, IL, USA, 1995.
- Eastman, J.A.; Choi, S.; Li, S.; Yu, W.; Thompson, L. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Chon, C.H.; Kihm, K.D.; Lee, S.P.; Choi, S.U. Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2 O 3) thermal conductivity enhancement. Appl. Phys. Lett. 2005, 87, 153107. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Numer. Methods Heat Fluid Flow 2000, 21, 58–64. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Mujumdar, A.S. Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci. 2007, 46, 1–19. [Google Scholar] [CrossRef]
- Trisaksri, V.; Wongwises, S. Critical review of heat transfer characteristics of nanofluids. Ren. Sustain. Energy Rev. 2007, 11, 512–523. [Google Scholar] [CrossRef]
- Putra, N.; Roetzel, W.; Das, S. Natural convection of nano-fluids. Heat Mass Transf. 2003, 39, 775–784. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Tham, L.; Nazar, R.; Pop, I. Mixed convection boundary-layer flow about an isothermal solid sphere in a nanofluid. Phys. Scr. 2011, 84, 025403. [Google Scholar] [CrossRef]
- Tham, L.; Nazar, R.; Pop, I. Mixed convection boundary layer flow from a horizontal circular cylinder in a nanofluid. Int. J. Numer. Method H. 2012, 22, 576–606. [Google Scholar] [CrossRef]
- Dinarvand, S.; Hosseini, R.; Pop, I. Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powder Technol. 2017, 311, 147–156. [Google Scholar] [CrossRef]
- Swalmeh, M.Z.; Alkasasbeh, H.T.; Hussanan, A.; Mamat, M. Heat transfer flow of Cu-water and Al2O3-water micropolar nanofluids about a solid sphere in the presence of natural convection using Keller-box method. Res. Phys. 2018, 9, 717–724. [Google Scholar] [CrossRef]
- Swalmeh, M.Z.; Alkasasbeh, H.T.; Hussanan, A.; Mamat, M. Numerical investigation of heat transfer enhancement with Ag-GO water and kerosene oil based micropolar nanofluid over a solid sphere. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 59, 269–282. [Google Scholar]
- Swalmeh, M.Z.; Alkasasbeh, H.T.; Hussanan, A.; Mamat, M. Influence of micro-rotation and micro-inertia on nanofluid flow over a heated horizontal circular cylinder with free convection. Theor. Appl. Mech. 2019, 46, 125–145. [Google Scholar] [CrossRef]
- Alwawi, F.A.; Alkasasbeh, H.T.; Rashad, A.; Idris, R. MHD natural convection of Sodium Alginate Casson nanofluid over a solid sphere. Res. Phys. 2020, 16, 102818. [Google Scholar] [CrossRef]
- Alwawi, F.A.; Alkasasbeh, H.T.; Rashad, A.M.; Idris, R. A numerical approach for the heat transfer flow of carboxymethyl cellulose-water based Casson nanofluid from a solid sphere generated by mixed convection under the influence of Lorentz force. Mathematics 2020, 8, 1094. [Google Scholar] [CrossRef]
- Alwawi, F.A.; Alkasasbeh, H.T.; Rashad, A.; Idris, R. Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2020, 234, 2569–2580. [Google Scholar] [CrossRef]
- Alwawi, F.A.; Alkasasbeh, H.T.; Rashad, A.M.; Idris, R. Natural convection flow of Sodium Alginate based Casson nanofluid about a solid sphere in the presence of a magnetic field with constant surface heat flux. In Proceedings of the Journal of Physics: Conference Series, Ningbo, China, 1–3 July 2019; p. 012005. [Google Scholar]
- Alwawi, F.; Sulaiman, I.M.; Swalmeh, M.Z.; Yaseen, N. Energy transport boosters of magneto micropolar fluid flowing past a cylinder: A case of laminar combined convection. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2022, 236, 10902–10913. [Google Scholar] [CrossRef]
- Hamarsheh, A.S.; Alwawi, F.A.; Alkasasbeh, H.T.; Rashad, A.M.; Idris, R. Heat transfer improvement in MHD natural convection flow of graphite oxide/carbon nanotubes-methanol based casson nanofluids past a horizontal circular cylinder. Processes 2020, 8, 1444. [Google Scholar] [CrossRef]
- Alwawi, F.A.; Hamarsheh, A.S.; Alkasasbeh, H.T.; Idris, R. Mixed Convection Flow of Magnetized Casson Nanofluid over a Cylindrical Surface. Coatings 2022, 12, 296. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Pop, I.; Waini, I.; Ishak, A. MHD flow of a nanofluid due to a nonlinear stretching/shrinking sheet with a convective boundary condition: Tiwari–Das nanofluid model. Int. J. Numer. Method H 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Swalmeh, M.Z.; Shatat, F.; Alwawi, F.A.; Ibrahim, M.A.H.; Sulaiman, I.M.; Yaseen, N.; Naser, M.F. Effectiveness of Radiation on Magneto-Combined Convective Boundary Layer Flow in Polar Nanofluid around a Spherical Shape. Fractal Fract. 2022, 6, 383. [Google Scholar] [CrossRef]
- Yaseen, N.; Shatat, F.; Alwawi, F.A.; Swalmeh, M.Z.; Kausar, M.S.; Sulaiman, I.M. Using Micropolar Nanofluid under a Magnetic Field to Enhance Natural Convective Heat Transfer around a Spherical Body. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 96, 179–193. [Google Scholar] [CrossRef]
- Turcu, R.; Darabont, A.; Nan, A.; Aldea, N.; Macovei, D.; Bica, D.; Vekas, L.; Pana, O.; Soran, M.; Koos, A. New polypyrrole-multiwall carbon nanotubes hybrid materials. J. Optoelectron. Adv. Mater. 2006, 8, 643–647. [Google Scholar]
- Suresh, S.; Venkitaraj, K.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Rashidi, A.; Rashtchian, D.; Lotfi, R.; Amrollahi, A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim. Acta 2012, 549, 87–94. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, Q.; Sui, X.; Dong, L.; Wang, Z. Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites. Compos. Part A Appl. Sci. Manuf. 2015, 71, 184–191. [Google Scholar] [CrossRef]
- Leong, K.; Ahmad, K.K.; Ong, H.C.; Ghazali, M.; Baharum, A. Synthesis and thermal conductivity characteristic of hybrid nanofluids–a review. Ren. Sustain. Energy Rev. 2017, 75, 868–878. [Google Scholar] [CrossRef]
- Chen, L.F.; Cheng, M.; Yang, D.J.; Yang, L. Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. In Proceedings of the Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch SZ, Switzerland, 2014; pp. 118–123. [Google Scholar]
- Esfe, M.H.; Saedodin, S.; Biglari, M.; Rostamian, H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: A statistical approach. Int. Commun. Heat Mass Transf. 2015, 69, 29–33. [Google Scholar] [CrossRef]
- Yarmand, H.; Gharehkhani, S.; Shirazi, S.F.S.; Goodarzi, M.; Amiri, A.; Sarsam, W.S.; Alehashem, M.S.; Dahari, M.; Kazi, S. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int. Commun. Heat Mass Transf. 2016, 77, 15–21. [Google Scholar] [CrossRef]
- Mohamed, A.L.; El-Naggar, M.E.; Hassabo, A.G. Preparation of hybrid nanoparticles to enhance the electrical conductivity and performance properties of cotton fabrics. J. Mater. Res. Technol. 2021, 12, 542–554. [Google Scholar] [CrossRef]
- Devi, S.A.; Devi, S.S.U. Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlinear Sci. Numer. Simul. 2016, 17, 249–257. [Google Scholar] [CrossRef]
- Hayat, T.; Nadeem, S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Res. Phys. 2017, 7, 2317–2324. [Google Scholar] [CrossRef]
- Subhani, M.; Nadeem, S. Numerical analysis of micropolar hybrid nanofluid. Appl. Nanosci. 2019, 9, 447–459. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Arifin, N.M.; Pop, I.; Wahid, N.S. Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: A comparative analysis. Alex. Eng. J. 2020, 59, 1787–1798. [Google Scholar] [CrossRef]
- Alwawi, F.A.; Swalmeh, M.Z.; Qazaq, A.S.; Idris, R. Heat Transmission Reinforcers Induced by MHD Hybrid Nanoparticles for Water/Water-EG Flowing over a Cylinder. Coatings 2021, 11, 623. [Google Scholar] [CrossRef]
- Jamshed, W.; Mishra, S.; Pattnaik, P.; Nisar, K.S.; Devi, S.S.U.; Prakash, M.; Shahzad, F.; Hussain, M.; Vijayakumar, V. Features of entropy optimization on viscous second grade nanofluid streamed with thermal radiation: A Tiwari and Das model. Case Stud. Therm. Eng. 2021, 27, 101291. [Google Scholar] [CrossRef]
- Jamshed, W.; Prakash, M.; Hussain, S.M.; Eid, M.R.; Nisar, K.S.; Muhammad, T. Entropy amplified solitary phase relative probe on engine oil based hybrid nanofluid. Chin. J. Phys. 2022, 77, 1654–1681. [Google Scholar] [CrossRef]
- Jamshed, W.; Nisar, K.S.; Ibrahim, R.W.; Mukhtar, T.; Vijayakumar, V.; Ahmad, F. Computational frame work of Cattaneo-Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: A thermal case study. Case Stud. Therm. Eng. 2021, 26, 101179. [Google Scholar] [CrossRef]
- Alwawi, F.A.; Al Faqih, F.M.; Swalmeh, M.Z.; Ibrahim, M.A.H. Combined Convective Energy Transmission Performance of Williamson Hybrid Nanofluid over a Cylindrical Shape with Magnetic and Radiation Impressions. Mathematics 2022, 10, 3191. [Google Scholar] [CrossRef]
- Ali, H.M. Hybrid Nanofluids for Convection Heat Transfer; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Esfe, M.H.; Bahiraei, M.; Mir, A. Application of conventional and hybrid nanofluids in different machining processes: A critical review. Adv. Colloid Interface Sci. 2020, 282, 102199. [Google Scholar] [CrossRef]
- Avinash Kumar, R.; Kavitha, M.; Manoj Kumar, P.; Arvindh Seshadri, S. Numerical study of graphene-platinum hybrid nanofluid in microchannel for electronics cooling. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2021, 235, 5845–5857. [Google Scholar] [CrossRef]
- Roos, H.-G.; Stynes, M.; Tobiska, L. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems; Springer Science & Business Media: Berlin, Germany, 2008; Volume 24. [Google Scholar]
- Stynes, M.; Stynes, D. Convection-Diffusion Problems; American Mathematical Soc.: Providence, RI, USA, 2018; Volume 196. [Google Scholar]
- John, V.; Knobloch, P.; Novo, J. Finite elements for scalar convection-dominated equations and incompressible flow problems: A never ending story? Comput. Vis. Sci. 2018, 19, 47–63. [Google Scholar] [CrossRef] [Green Version]
- AbdulRidha, M.W.; Kashkool, H.A. Space-time petrov-discontinuous galerkin finite element method for solving linear convection-diffusion problems. In Proceedings of the Journal of Physics: Conference Series, Varna, Bulgaria, 21–24 June 2022; p. 012007. [Google Scholar]
- Siryk, S. Analysis of lumped approximations in the finite-element method for convection–diffusion problems. Cybern. Syst. Anal. 2013, 49, 774–784. [Google Scholar] [CrossRef]
- Swalmeh, M.Z. Numerical Solutions of Hybrid Nanofluids Flow Via Free Convection Over a Solid Sphere. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 83, 34–45. [Google Scholar] [CrossRef]
- Yahya, A.U.; Salamat, N.; Huang, W.-H.; Siddique, I.; Abdal, S.; Hussain, S. Thermal charactristics for the flow of Williamson hybrid nanofluid (MoS2+ ZnO) based with engine oil over a streched sheet. Case Stud. Therm. Eng. 2021, 26, 101196. [Google Scholar] [CrossRef]
- Molla, M.M.; Hossain, M.A.; Paul, M.C. Natural convection flow from an isothermal horizontal circular cylinder in presence of heat generation. Int. J. Eng. Sci. 2006, 44, 949–958. [Google Scholar] [CrossRef]
- Bergman, T.L.; Bergman, T.L.; Incropera, F.P.; Dewitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Cebeci, T.; Bradshaw, P. Physical and Computational Aspects of Convective Heat Transfer; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Huang, M.; Chen, G. Laminar free convection from a sphere with blowing and suction. J. Heat Transf. 1987, 109, 529–532. [Google Scholar] [CrossRef]
- Nazar, R.; Amin, N. Free convection boundary layer on an isothermal sphere in a micropolar fluid. Int. Commun. Heat Mass Transf. 2002, 29, 377–386. [Google Scholar] [CrossRef]
- Khan, I.; Gul, A.; Shafie, S. Effects of magnetic field on molybdenum disulfide nanofluids in mixed convection flow inside a channel filled with a saturated porous medium. J. Porous Media 2017, 20, 435–448. [Google Scholar] [CrossRef]
- Alsagri, A.S.; Nasir, S.; Gul, T.; Islam, S.; Nisar, K.; Shah, Z.; Khan, I. MHD thin film flow and thermal analysis of blood with CNTs nanofluid. Coatings 2019, 9, 175. [Google Scholar] [CrossRef]
Properties of the Mono Nanofluid | Properties of the Hybrid Nanofluid |
---|---|
[64] | [65] | Present | |
---|---|---|---|
0 | 0.9581 | 0.9595 | 0.9593 |
0.9559 | 0.9572 | 0.9568 | |
0.9496 | 0.9506 | 0.9499 | |
0.9389 | 0.9397 | 0.9397 | |
0.9239 | 0.9243 | 0.9242 | |
0.9045 | 0.9045 | 0.9046 | |
0.8858 | 0.8801 | 0.8833 | |
0.8518 | 0.8510 | 0.8526 | |
0.8182 | 0.8168 | 0.8178 | |
0.7792 | 0.7792 | 0.7792 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzu’bi, O.A.S.; Alwawi, F.A.; Swalmeh, M.Z.; Sulaiman, I.M.; Hamarsheh, A.S.; Ibrahim, M.A.H. Energy Transfer through a Magnetized Williamson Hybrid Nanofluid Flowing around a Spherical Surface: Numerical Simulation. Mathematics 2022, 10, 3823. https://doi.org/10.3390/math10203823
Alzu’bi OAS, Alwawi FA, Swalmeh MZ, Sulaiman IM, Hamarsheh AS, Ibrahim MAH. Energy Transfer through a Magnetized Williamson Hybrid Nanofluid Flowing around a Spherical Surface: Numerical Simulation. Mathematics. 2022; 10(20):3823. https://doi.org/10.3390/math10203823
Chicago/Turabian StyleAlzu’bi, Oruba Ahmad Saleh, Firas A. Alwawi, Mohammed Z. Swalmeh, Ibrahim Mohammed Sulaiman, Abdulkareem Saleh Hamarsheh, and Mohd Asrul Hery Ibrahim. 2022. "Energy Transfer through a Magnetized Williamson Hybrid Nanofluid Flowing around a Spherical Surface: Numerical Simulation" Mathematics 10, no. 20: 3823. https://doi.org/10.3390/math10203823
APA StyleAlzu’bi, O. A. S., Alwawi, F. A., Swalmeh, M. Z., Sulaiman, I. M., Hamarsheh, A. S., & Ibrahim, M. A. H. (2022). Energy Transfer through a Magnetized Williamson Hybrid Nanofluid Flowing around a Spherical Surface: Numerical Simulation. Mathematics, 10(20), 3823. https://doi.org/10.3390/math10203823