Novel Bäcklund Transformations for Integrable Equations
Abstract
:1. Introduction
2. A Matrix Partial Differential Equation
3. Auto-Bäcklund Transformations
4. Reduction to a Matrix Fourth Painlevé Equation
5. Discussion
- the derivation of a new completely integrable inverse matrix dispersive water wave equation and a modification thereof;
- the derivation of a new matrix partial differential equation having a structure and properties which mirror those of a matrix fourth Painlevé equation, in particular an auto-Bäcklund transformation;
- a reduction from our matrix partial differential equation and its auto-Bäcklund transformations to the ordinary differential case.
Author Contributions
Funding
Conflicts of Interest
References
- Gordoa, P.R.; Pickering, A. On matrix fourth Painlevé hierarchies. J. Differ. Equ. 2021, 271, 499–532. [Google Scholar] [CrossRef]
- Gordoa, P.R.; Pickering, A. Auto-Bäcklund transformations for a matrix partial differential equation. Phys. Lett. A 2018, 382, 1908–1915. [Google Scholar] [CrossRef]
- Conde, J.M.; Gordoa, P.R.; Pickering, A. Auto-Bäcklund transformations and integrability of ordinary and partial differential equations. J. Math. Phys. 2010, 51, 033512. [Google Scholar] [CrossRef]
- Conde, J.M.; Gordoa, P.R.; Pickering, A. A new kind of Bäcklund transformation for partial differential equations. Rep. Math. Phys. 2012, 70, 149–161. [Google Scholar] [CrossRef]
- Lamb, G.L., Jr. Elements of Soliton Theory; John Wiley and Sons: New York, NY, USA, 1980. [Google Scholar]
- Rogers, C.; Shadwick, W.F. Bäcklund transformations and their Applications; Academic Press: New York, NY, USA; London, UK, 1982. [Google Scholar]
- Gromak, V.I.; Laine, I.; Shimomura, S. Painlevé Differential Equations in the Complex Plane; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2002. [Google Scholar]
- Noumi, M. Painlevé Equations through Symmetry; American Mathematical Society: Providence, RI, USA, 2004. [Google Scholar]
- Broer, L.J.F. Approximate equations for long water waves. Appl. Sci. Res. 1975, 31, 377–395. [Google Scholar] [CrossRef]
- Kaup, D.J. Finding eigenvalue problems for solving nonlinear evolution equations. Prog. Theor. Phys. 1975, 54, 72–78. [Google Scholar] [CrossRef]
- Kaup, D.J. A higher-order water-wave equation and the method for solving it. Prog. Theor. Phys. 1975, 54, 396–408. [Google Scholar] [CrossRef]
- Jaulent, M.; Miodek, J. Nonlinear evolution equations associated with energy-dependent Schrödinger potentials. Lett. Math. Phys. 1976, 1, 243–250. [Google Scholar] [CrossRef]
- Matveev, V.B.; Yavor, M.I. Solutions presque périodiques et à N solitons de l’équation hydrodynamique non linéaire de Kaup. Ann. Inst. H. Poincaré 1979, 31, 25–41. [Google Scholar]
- Martínez Alonso, L. Schrödinger spectral problems with energy–dependent potentials as sources of nonlinear Hamiltonian evolution equations. J. Math. Phys. 1980, 21, 2342–2349. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Mathematics of Dispersive water waves. Commun. Math. Phys. 1985, 99, 51–73. [Google Scholar] [CrossRef]
- Antonowicz, M.; Fordy, A.P. Coupled KdV equations with multi-Hamiltonian structures. Physica D 1987, 28, 345–357. [Google Scholar] [CrossRef]
- Antonowicz, M.; Fordy, A.P. Factorisation of energy-dependent Schrödinger operators: Miura maps and modified systems. Commun. Math. Phys. 1989, 124, 465–486. [Google Scholar] [CrossRef]
- Gordoa, P.R.; Pickering, A.; Zhu, Z.N. On matrix Painlevé hierarchies. J. Differ. Equ. 2016, 261, 1128–1175. [Google Scholar] [CrossRef]
- Gordoa, P.R.; Pickering, A.; Wattis, J.A.D. Solution classes of the matrix second Painlevé hierarchy. Physica D 2022, 435, 133295. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordoa, P.R.; Pickering, A. Novel Bäcklund Transformations for Integrable Equations. Mathematics 2022, 10, 3565. https://doi.org/10.3390/math10193565
Gordoa PR, Pickering A. Novel Bäcklund Transformations for Integrable Equations. Mathematics. 2022; 10(19):3565. https://doi.org/10.3390/math10193565
Chicago/Turabian StyleGordoa, Pilar Ruiz, and Andrew Pickering. 2022. "Novel Bäcklund Transformations for Integrable Equations" Mathematics 10, no. 19: 3565. https://doi.org/10.3390/math10193565
APA StyleGordoa, P. R., & Pickering, A. (2022). Novel Bäcklund Transformations for Integrable Equations. Mathematics, 10(19), 3565. https://doi.org/10.3390/math10193565