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Abstract: In this paper, we construct a new matrix partial differential equation having a structure and
properties which mirror those of a matrix fourth Painlevé equation recently derived by the current
authors. In particular, we show that this matrix equation admits an auto-Bäcklund transformation
analogous to that of this matrix fourth Painlevé equation. Such auto-Bäcklund transformations, in
appearance similar to those for Painlevé equations, are quite novel, having been little studied in
the case of partial differential equations. Our work here shows the importance of the underlying
structure of differential equations, whether ordinary or partial, in the derivation of such results. The
starting point for the results in this paper is the construction of a new completely integrable equation,
namely, an inverse matrix dispersive water wave equation.

Keywords: integrable equations; Bäcklund transformations; Miura maps; inverse matrix; dispersive
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1. Introduction

Our aim in the current paper is to present a new matrix partial differential equation
having a structure and properties which mirror those of the matrix fourth Painlevé equation
obtained in [1]. For this equation, we then give an auto-Bäcklund transformation of a form
similar to that of an auto-Bäcklund transformation for this matrix fourth Painlevé equation.
Our overarching objective is to provide further proof of the importance of the underlying
structure of differential equations, not just ordinary but also partial, in the derivation of
such results.

This underlying structure, for both our new matrix partial differential equation and our
matrix fourth Painlevé equation, is expressed using Miura maps. Thus, our starting point
here is the derivation of a new completely integrable inverse matrix dispersive water wave
equation; we recall that the matrix dispersive water wave hierarchy was also first presented
in [1]. We then use a Miura map to obtain a modified version of this equation, which in
turn leads us to the derivation of the new matrix partial differential equation of interest to
us here, and for which we subsequently give a novel auto-Bäcklund transformation.

We refer to the auto-Bäcklund transformation presented here as novel, since auto-
Bäcklund transformations for partial differential equations of the form we give here, i.e., sim-
ilar to those of Painlevé equations, have been little studied in the literature, especially in
the (relatively troublesome) matrix case. We remark that results for an inverse matrix
Korteweg–de Vries equation were obtained in [2], and results for scalar partial differential
equations have been given in [3,4]. Descriptions and examples of auto-Bäcklund transfor-
mations of the kind that are usually given for integrable partial differential equations in
1+ 1-dimensions, which, in contrast to those for Painlevé equations, depend on a parameter,
can be found in [5,6]. For example, the potential modified Korteweg–de Vries equation
vt + vxxx + 2v3

x = 0, which is related to the modified Korteweg–de Vries equation in u via
u = vx, has the auto-Bäcklund transformation
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(z + w)x = 2k sin(z− w), (1)

(z + w)t = −2k(zxx − wxx) cos(z− w)− 2k(z2
x + w2

x) sin(z− w); (2)

elimination of z or w between these equations yields the potential modified Korteweg–de
Vries equation in v = w or v = z, respectively. It is the presence of the arbitrary parameter
k, that allows the construction of multi-soliton solutions. For discussions of auto-Bäcklund
transformations for Painlevé equations, on the other hand, we refer to [7,8]. The second
Painlevé equation, for example, has the auto-Bäcklund transformation

u = v +
α− β

2vx − 2v2 − x
, α = 1− β, (3)

which maps from a solution of the second Painlevé equation for dependent variable v
and constant coefficient β, i.e., vxx = 2v3 + xv + β, to a solution of the same equation for
dependent variable u and constant coefficient α, i.e., uxx = 2u3 + xu + α, with α = 1− β.
Such mappings between solutions involving changes in the values of constant parameters
appearing as coefficients are typical of the Painlevé equations (except the first) and their
various analogues.

The layout of the paper is as follows. In Section 2, we derive the matrix partial
differential equation of interest to us here, beginning with a new completely integrable
inverse matrix dispersive water wave equation. In Section 3, we give auto-Bäcklund
transformations for this equation. In Section 4, we consider the reduction of our equation
and its auto-Bäcklund transformations to the ordinary differential case, i.e., to a matrix
fourth Painlevé equation and corresponding results. Section 5 is devoted to a discussion
and conclusions.

2. A Matrix Partial Differential Equation

In this section, we give our derivation of a new matrix equation, which, even though
it is a partial rather than an ordinary differential equation, has a structure and properties
which mirror those of a matrix fourth Painlevé equation presented in [1]. With this aim we
begin by constructing a completely integrable non-autonomous inverse matrix dispersive
water wave equation; we will then derive a modified version of this equation, which we
will in turn use to obtain the equation of interest to us in this paper. We note that the
matrix dispersive water wave hierarchy is as defined in [1]; for the scalar case we refer
to [9–14] and in particular [15–17]. Let us consider the non-isospectral scattering problem
in (1 + 1)-dimensions

ψxx = −uψ, (4)

ψt =
1
2

P[u]ψx −
1
4

[
(P[u])x + (∂−1

x CuP[u])
]
ψ, (5)

where u = u0 + u1λ−λ2 I, u0 = u0(x, t) and u1 = u1(x, t) are square matrices, u = (u0, u1)
T ,

λ = λ(t) is a scalar function of t and I is the identity matrix. We use the subscripts x and t
to denote corresponding partial derivatives, ∂x the partial differential operator with respect
to x and ∂−1

x its inverse. The compatibility condition of the above scattering problem reads

u1,tλ + u1λt + u0,t − 2λλt I =
[

J0[u] + λJ1[u]− λ2 J[u]
]

P[u] (6)
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where the operators J0[u], J1[u] and J[u] are defined as

J0[u] =
1
4

[
∂3

x + (Au0 ∂x + ∂x Au0) + Cu0 ∂−1
x Cu0

]
, (7)

J1[u] =
1
4

[
(Au1 ∂x + ∂x Au1) + Cu0 ∂−1

x Cu1 + Cu1 ∂−1
x Cu0

]
, (8)

J[u] = ∂x −
1
4

Cu1 ∂−1
x Cu1 . (9)

In the above expressions

Aw = Lw + Rw, Cw = Lw − Rw, (10)

where the left and right multiplication operators Lw and Rw act as usual:

Lw(z) = wz, Rw(z) = zw. (11)

We now set in the above Lax pair

P[u] = − 1
λ

[
J[u]−1u1,t + 2γ0 I + g1xI

]
, (12)

where γ0 = γ0(t) and g1 = g1(t) are scalar functions of t and where we assume that λ
satisfies the (relatively weak) non-isospectral condition

λt = −
1
2

g1. (13)

The compatibility condition (6) yields, collecting terms at different powers of λ,

J0[u]J[u]−1u1,t + γ0u0,x + J0[u](g1xI) = 0, (14)

J1[u]J[u]−1u1,t + u0,t + γ0u1,x + J1[u](g1xI)− 1
2

g1u1 = 0. (15)

The above two equations can be written as

R[u]ut + γ0ux +
1
2

g1

(
2u0 + xu0,x
u1 + xu1,x

)
= 0, (16)

or alternatively as

R[u]ut + γ0ux + g1R[u]
(
− 1

2 u1
I

)
= 0, (17)

where the operatorR[u] is given by

R[u] =
(

0 J0[u]J[u]−1

I J1[u]J[u]−1

)
. (18)

This new system of matrix equations corresponds to a non-autonomous version of
the first inverse flow of the matrix dispersive wave hierarchy defined in [1]. In [1], it was
shown that the operatorR[u] can be expressed as

R[u] = B1[u]B0[u]−1 (19)
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where

B0[u] =

(
−J1[u] J[u]

J[u] 0

)
, (20)

B1[u] =

(
J0[u] 0

0 J[u]

)
. (21)

Equation (17) can then also be written alternatively as

B1[u]M[u] = 0 (22)

where

M[u] =
(

J[u]−1u1,t
J[u]−1u0,t + J[u]−1 J1[u]J[u]−1u1,t

)
+ γ0

(
2I
u1

)
+

1
2

g1

(
2Ix
xu1

)
. (23)

We now turn to the derivation of a modified version of the new matrix partial dif-
ferential Equation (17), as written in the form (22). In [1], it was shown that under the
Miura map

u = h[Φ] =

(
− 1

2 φx − 1
4 φ2

φ + 2p

)
, (24)

where Φ = (φ, p)T (φ(x, t) and p(x, t) being square matrices), the operator B1[u] is factor-
ized as

B1[u] = h′[Φ]C[Φ](h′[Φ])†,

u=h[Φ]
(25)

where h′[Φ] is the Fréchet derivative of the Miura map u = h[Φ] and (h′[Φ])† is its adjoint,
given by

h′[Φ] =

(
− 1

2 ∂x − 1
4 Aφ 0

I 2I

)
(26)

and

(h′[Φ])† =

( 1
2 ∂x − 1

4 Aφ I
0 2I

)
(27)

respectively; and C[Φ] has the form

C[Φ] =
1
2

(
−2∂x +

1
2 Cφ∂−1

x Cφ ∂x − 1
4 Cφ∂−1

x Cφ

∂x − 1
4 Cφ∂−1

x Cφ − 1
4 (Cφ∂−1

x Cp + Cp∂−1
x Cφ + 2Cp∂−1

x Cp)

)
. (28)

This means that, under this Miura map, corresponding to Equation (22), we have the
modified equation

C[Φ]
(
h′[Φ]

)† M[h[Φ]] = 0. (29)

In order to obtain a matrix partial differential equation which mirrors the structure
of a matrix fourth Painlevé equation, we now observe that since any vector consisting of
scalar x-independent multiples of the identity matrix is in the kernel of the operator C[Φ],
Equation (29) is equivalent to

C[Φ]

[(
h′[Φ]

)† M̃[h[Φ]] +

(
eI
f I

)]
= 0, (30)

where e = e(t) and f = f (t) are arbitrary functions of t and

M̃[u] = M[u] +
(

0
− 1

2 g1 I

)
. (31)
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Making now the same step used in our work in [2], and in [1,18] on matrix Painlevé
hierarchies, from Equation (30) we are led to consider the non-autonomous matrix partial
differential equation (

h′[Φ]
)† M̃[h[Φ]] +

(
eI
f I

)
= 0. (32)

The structure of this new matrix partial differential equation closely reflects that of
Equation (3.35) in [1]; the latter defines a matrix fourth Painlevé hierarchy, the first member
of which is a matrix fourth Painlevé equation, to which (32) corresponds, as can be seen
from Section 4. By taking into account the Miura map (24), and introducing the auxiliary
variables w1 and w2 defined by

w2 = J−1[h[Φ]](φ + 2p)t, w1 = J−1[h[Φ]]

{(
−1

2
φx −

1
4

φ2
)

t
+ J1[h[Φ]]w2

}
, (33)

we can write our system (32) as the pair of equations

w2,x −
1
2
(φw2 + w2φ)− 2γ0φ− g1xφ + (g1 + 2e− f )I = 0, (34)

2w1 + 2γ0(φ + 2p) + g1x(φ + 2p) + ( f − g1)I = 0, (35)

coupled with

J[h[Φ]]w2 − (φ + 2p)t = 0, (36)

J[h[Φ]]w1 +

(
1
2

φx +
1
4

φ2
)

t
− J1[h[Φ]]w2 = 0. (37)

It is this system, (34)–(37), for which we will now give auto-Bäcklund transformations,
with the functions e and f playing the roles usually played by constant parameters in the
case of Painlevé equations.

3. Auto-Bäcklund Transformations

The structure of the system (34)–(37), as mentioned above, mirrors that of a matrix
fourth Painlevé equation given in [1]; in both cases this structure is expressed using Miura
maps. The definition of an auto-Bäcklund transformation, the derivation or proof of which
makes use of this structure, then proceeds similarly in the two cases. Such transformations
for partial differential equations, having a form analogous to those of auto-Bäcklund
transformations for the Painlevé equations, have been little studied in the literature. We
now define such a novel transformation for the non-autonomous matrix partial differential
system of equations given above.

Theorem 1. The system (32) that we rewrite as the set of Equations (34)–(37), admits the auto-
Bäcklund transformation

φ = φ̃ + 2(e− ẽ)[w̃2 + 2γ0 I + g1xI]−1, (38)

p = p̃− (e− ẽ)[w̃2 + 2γ0 I + g1xI]−1, (39)

w1 = w̃1, (40)

w2 = w̃2, (41)

e = −ẽ + f̃ , (42)

f = f̃ . (43)
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This auto-Bäcklund transformation relates solutions of (34)—(37) in Φ = (φ, p)T and w1, w2,
with coefficient functions (e, f ) of t, to solutions of the same system in Φ̃ = (φ̃, p̃)T and w̃1, w̃2,
with coefficient functions (ẽ, f̃ ) of t, i.e.,(

h′[Φ̃]
)† M̃[h[Φ̃]] + (ẽI, f̃ I)T = 0, (44)

or

w̃2,x −
1
2
(φ̃w̃2 + w̃2φ̃)− 2γ0φ̃− g1xφ̃ + (g1 + 2ẽ− f̃ )I = 0, (45)

2w̃1 + 2γ0(φ̃ + 2p̃) + g1x(φ̃ + 2p̃) + ( f̃ − g1)I = 0, (46)

J[h[Φ̃]]w̃2 − (φ̃ + 2p̃)t = 0, (47)

J[h[Φ̃]]w̃1 +

(
1
2

φ̃x +
1
4

φ̃2
)

t
− J1[h[Φ̃]]w̃2 = 0, (48)

provided that the first component of M̃[h[Φ̃]]—namely, w̃2 + 2γ0 I + g1xI—is nonsingular.

Proof. To prove our result, first of all we note that the Miura transformation h[Φ], as given
by (24), is invariant under transformation (38)–(43), i.e., h[Φ] = h[Φ̃]. It is trivial to check
using (38) and (39) that the second component of the Miura map is invariant, i.e., that
φ + 2p = φ̃ + 2p̃. To prove the invariance of the first component of the Miura map, we see
that (38), (42) and (45) give

1
2

φx +
1
4

φ2 =
1
2

φ̃x +
1
4

φ̃2 − (e− ẽ)(w̃2 + 2γ0 I + g1xI)−1 ×{
w̃2,x −

1
2
(φ̃w̃2 + w̃2φ̃)− 2γ0φ̃− g1xφ̃ + (g1 + ẽ− e)I

}
(w̃2 + 2γ0 I + g1xI)−1

=
1
2

φ̃x +
1
4

φ̃2 + (e− ẽ)(ẽ + e− f̃ )(w̃2 + 2γ0 I + g1xI)−2 =
1
2

φ̃x +
1
4

φ̃2. (49)

We now use this invariance of the Miura map under the auto-Bäcklund transformation
to show that (38)–(43) is indeed an auto-Bäcklund transformation for (32), i.e., for the
system (34)–(37). First of all, using Equations (38), (41) and (43), we see that under the
above auto-Bäcklund transformation the left-hand-side of Equation (34) transforms as

w2,x −
1
2
(φw2 + w2φ)− 2γ0φ− g1xφ + (g1 + 2e− f )I

= w̃2,x −
1
2
(φ̃w̃2 + w̃2φ̃)− 2γ0φ̃− g1xφ̃ + (g1 + 2ẽ− f̃ )I. (50)

Additionally, using Equations (40) and (43), and the invariance of the Miura map,
in particular that φ+ 2p = φ̃+ 2p̃, we see that the left-hand-side of Equation (35) transforms
as

2w1 + 2γ0(φ + 2p) + g1x(φ + 2p) + ( f − g1)I

= 2w̃1 + 2γ0(φ̃ + 2p̃) + g1x(φ̃ + 2p̃) + ( f̃ − g1)I. (51)

Now using Equations (40) and (41), and the invariance of the Miura map, h[Φ] = h[Φ̃],
we see that the left-hand-sides of Equations (36) and (37) transform as

J[h[Φ]]w2 − (φ + 2p)t = J[h[Φ̃]]w̃2 − (φ̃ + 2p̃)t, (52)

J[h[Φ]]w1 +

(
1
2

φx +
1
4

φ2
)

t
− J1[h[Φ]]w2

= J[h[Φ̃]]w̃1 +

(
1
2

φ̃x +
1
4

φ̃2
)

t
− J1[h[Φ̃]]w̃2. (53)
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Thus we see that if (45)–(48) hold, then the mapping (38)–(43) provides solutions of
(34)–(37). This concludes the proof that (38)–(43) is in fact an auto-Bäcklund transformation
for the system of Equations (34)–(37), or equivalently for the system (32).

Remark 1. It is readily seen that the auto-Bäcklund transformation (38)–(43) is an involution.

Remark 2. The system (34)–(37) also admits the auto-Bäcklund transformation

φ = φ̃T , p = p̃T , w1 = w̃T
1 , w2 = w̃T

2 , e = ẽ, f = f̃ , (54)

as may be easily checked.

In order to consider the action of the auto-Bäcklund transformation (38)–(43), we first of
all need an initial solution of the system (34)–(37). In order to find such a solution, we could
consider reducing to a system of matrix ordinary differential equations, or alternatively
reducing to a system of scalar equations. We will see in the next section that the system
(34)–(37) admits a reduction to a matrix fourth Painlevé system given in [1] (a system of
matrix ordinary differential equations), which would then provide one way of obtaining
solutions of (34)–(37). However, the question of solutions of this matrix fourth Painlevé
system has yet to be explored, and is beyond the scope of the present paper (as an example
of the consideration of solution classes of matrix ordinary differential equations, we refer
to [19]). In the case of the scalar reduction, it can be shown that our auto-Bäcklund
transformation (38)–(43) can allow a new solution to be obtained from a given initial
solution. This can be seen from the fact that this reduction leads us to a system of scalar
equations and a corresponding scalar auto-Bäcklund transformation, which were presented
in [4], and that in [4], the action of this scalar auto-Bäcklund transformation on a particular
initial solution of the scalar system was shown to yield a new solution of the scalar system.
For the more interesting case of initial solutions of (34)–(37) corresponding to neither an
ordinary differential equation reduction nor a scalar reduction, for the purposes of the
present paper it is enough to consider the solution given by

φ̃ = 0, p̃ = 0, w̃1 =
1
2
(g1 − f̃ )I, w̃2 = F, (55)

for ẽ and f̃ satisfying
2ẽ− f̃ + g1 = 0, (56)

where F = F(t) is an arbitrary matrix function of t. The auto-Bäcklund transformation
(38)–(43) then yields a new solution of (34)–(37) given by

φ = 2g1(F + 2γ0 I + g1xI)−1, p = −g1(F + 2γ0 I + g1xI)−1, (57)

w1 =
1
2
(g1 − f )I, w2 = F, (58)

for e and f satisfying
2e− f − g1 = 0. (59)

For g1 6= 0, we thus obtain a new solution of the matrix system (34)–(37) rational in x.

4. Reduction to a Matrix Fourth Painlevé Equation

We now consider a reduction to a matrix fourth Painlevé equation.

Theorem 2. The system (34)–(37) admits a reduction to a matrix fourth Painlevé system given
in [1]; the corresponding reductions of the auto-Bäcklund transformations (38)–(43) and (54) give
auto-Bäcklund transformations for this matrix fourth Painlevé system, as given in [1].
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Proof. In system (34)–(37), we set

φ = Φ(z), p = P(z), z = x + t, γ0 = γ +
1
2

gt, g1 = g, (60)

where γ and g are constant, and assume also that e and f are constant. Under this reduction
we find that

w2 = Φ + 2P, w1 =
3
4
(Φ + 2P)2 −

(
1
2

Φz +
1
4

Φ2
)

, (61)

and so the system of Equations (34)–(37) yields

Φz + 2Pz −Φ2 −ΦP− PΦ− 2γΦ− gzΦ + (g + 2e− f )I = 0, (62)

Φz −Φ2 − 6P2 − 3ΦP− 3PΦ− 2γ(Φ + 2P)− gz(Φ + 2P) + (g− f )I = 0. (63)

This is equivalent to the matrix system—(3.47), (3.48)—obtained in [1], given as the
first member of the matrix fourth Painlevé hierarchy (3.35) defined therein, and defines for
g 6= 0 a matrix fourth Painlevé system. The auto-Bäcklund transformation (38)–(43) then
reduces to

Φ = Φ̃ + 2(e− ẽ)
[
Φ̃ + 2P̃ + 2γI + gzI

]−1, (64)

P = P̃− (e− ẽ)
[
Φ̃ + 2P̃ + 2γI + gzI

]−1, (65)

e = −ẽ + f̃ , (66)

f = f̃ . (67)

The auto-Bäcklund transformations of the system (62), (63) as given by (64)–(67),
and by the corresponding reduced case of (54), i.e.,

Φ = Φ̃T , P = P̃T , e = ẽ, f = f̃ , (68)

are as given in [1].

Remark 3. Whilst in the auto-Bäcklund transformation (38)–(43) for the system (34)–(37) the
transformation rules w1 = w̃1 and w2 = w̃2 might at first sight seem overly restrictive, we see
from (61), given the invariance of the Miura map, which holds also in the reduced case, that these
transformation rules are in fact quite natural.

5. Discussion

In this paper, we have obtained the following results:

• the derivation of a new completely integrable inverse matrix dispersive water wave
equation and a modification thereof;

• the derivation of a new matrix partial differential equation having a structure and
properties which mirror those of a matrix fourth Painlevé equation, in particular an
auto-Bäcklund transformation;

• a reduction from our matrix partial differential equation and its auto-Bäcklund trans-
formations to the ordinary differential case.

These results, when compared to our results in [1] for a matrix fourth Painlevé equa-
tion, allowed us to confirm that in the derivation of properties such as auto-Bäcklund
transformations, and the underlying structure of the equation, here expressed using a
Miura map, are of fundamental importance. This is true not just of ordinary but also
partial differential equations, whether they be scalar, or as in the present paper, matrix.
The resulting auto-Bäcklund transformations for partial differential equations, similar to
those of Painlevé equations, are novel in nature, and they and the corresponding equations
are well worth future study.
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