Fractured Elbow Classification Using Hand-Crafted and Deep Feature Fusion and Selection Based on Whale Optimization Approach
Abstract
:1. Introduction
- ▪
- The X-ray images are converted into RGB color space. The data augmentation method is applied, in which the X-ray images are flipped vertically and horizontally to increase the number of images. Then, extracted features are fused serially for the selection of important features using PCA. The fused informative selected features vector is further enhanced using improved WOA and passed as an input to the classifiers such as SVM, WNN, and KNN for discrimination between the healthy/fractured elbow X-ray images.
2. Related Work
3. Proposed Methodology
3.1. Feature Extraction Method
3.1.1. Local Binary Pattern (LBP)
3.1.2. Histogram of Oriented Gradient (HOG)
3.2. Deep Feature Extraction Using Fully Connected Layers
3.3. Serial Feature Fusion/Optimum Features Selection
3.4. Features Selection
3.5. Classification of Elbow Fracture
4. Results and Discussion
4.1. Experiment #1: Classification of Fractured Elbow Images Using Five-Fold Cross-Validation
4.2. Experiment#2 Classification of Fractured Elbow Images Using 10 Cross-Validation
4.3. Comparison of the Results of the Proposed Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younes, N.; el Hajj, M.-A.; Bizdikian, A.J.; Gannagé-Yared, M.-H. An epidemiological evaluation of fractures and its determinants among Lebanese schoolchildren: A cross-sectional study. Arch. Osteoporos. 2019, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Damilakis, J.; Adams, J.E.; Guglielmi, G.; Link, T.M. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur. Radiol. 2010, 20, 2707–2714. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-F. High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2011, 2, 8. [Google Scholar] [CrossRef]
- MacDermid, J.C.; Vincent, J.I.; Kieffer, L.; Kieffer, A.; Demaiter, J.; MacIntosh, S. A survey of practice patterns for rehabilitation post elbow fracture. Open J. Orthop. 2012, 6, 429. [Google Scholar] [CrossRef] [PubMed]
- Champagne, N.; Eadie, L.; Regan, L.; Wilson, P. The effectiveness of ultrasound in the detection of fractures in adults with suspected upper or lower limb injury: A systematic review and subgroup meta-analysis. BMC Emerg. Med. 2019, 19, 17. [Google Scholar] [CrossRef]
- Mateer, J.R.; Ogata, M.; Kefer, M.P.; Wittmann, D.; Aprahamian, C. Prospective analysis of a rapid trauma ultrasound examination performed by emergency physicians. J. Trauma Acute Care Surg. 1995, 38, 879–885. [Google Scholar]
- Azizkhani, R.; Yazdi, Z.H.; Heydari, F. Diagnostic accuracy of ultrasonography for diagnosis of elbow fractures in children. Eur. J. Trauma Emerg. Surg. 2021, 184, 1–8. [Google Scholar] [CrossRef]
- Al-Aubaidi, Z.; Torfing, T. The role of fat pad sign in diagnosing occult elbow fractures in the pediatric patient: A prospective magnetic resonance imaging study. J. Pediatr. Orthop. B 2012, 21, 514–519. [Google Scholar] [CrossRef]
- Dimitrov, D.V. Medical internet of things and big data in healthcare. Healthc. Inform. Res. 2016, 22, 156–163. [Google Scholar] [CrossRef]
- Swathika, B.; Anandhanarayanan, K.; Baskaran, B.; Govindaraj, R. Segmentation, Radius Bone Fracture Detection Using Morphological Gradient Based Image Segmentation. Int. J. Comput. Sci. Inf. Technol. 2015, 6, 1616–1619. [Google Scholar]
- Niveaditha, S.S.; Pavithra, V.; Jayashree, R.; Tamilselvi, T. Online diagnosis of X-ray image using FLDA image processing algorithm. In Proceedings of the IRF International Conference, Riyadh, Saudi Arabia, 19–22 October 2014; pp. 76–80. [Google Scholar]
- Basha, C.Z.; Padmaja, T.M.; Balaji, G. Automatic X-ray Image Classification System. In Smart Computing and Informatics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 43–52. [Google Scholar]
- Sarfo-Walters, R. Knowledge, Attitudes and Practices of Postoperative Pain Assessment and Management among Health Care Practitioners in Cape Coast Metropolis, Ghana. Texila Int. J. Nurs. 2015, 96, 1–13. [Google Scholar]
- Amin, J.; Anjum, M.A.; Sharif, A.; Raza, M.; Kadry, S.; Nam, Y. Malaria Parasite Detection Using a Quantum-Convolutional Network. CMC-Comput. Mater. Contin. 2022, 70, 6023–6039. [Google Scholar] [CrossRef]
- Amin, J.; Anjum, M.A.; Sharif, M.; Rehman, A.; Saba, T.; Zahra, R. Microscopic segmentation and classification of COVID-19 infection with ensemble convolutional neural network. Microsc. Res. Tech. 2022, 85, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Sharif, M.; Fernandes, S.L.; Wang, S.H.; Saba, T.; Khan, A.R. Breast microscopic cancer segmentation and classification using unique 4-qubit-quantum model. Microsc. Res. Tech. 2022, 85, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, S.; Wang, G. Automated universal fractures detection in X-ray images based on deep learning approach. Multimed. Tools Appl. 2022, 164, 1–17. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Abbaspour-Gilandeh, Y.; Heidarbeigi, K.; Momeny, M. A novel method based on machine vision system and deep learning to detect fraud in turmeric powder. Comput. Biol. Med. 2021, 136, 104728. [Google Scholar] [CrossRef]
- Luo, J.; Kitamura, G.; Arefan, D.; Doganay, E.; Panigrahy, A.; Wu, S. Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Strasbourg, France, 27 September 2021; pp. 555–564. [Google Scholar]
- Nguyen, H.P.; Hoang, T.P.; Nguyen, H.H. A deep learning based fracture detection in arm bone X-ray images. In Proceedings of the International Conference on Multimedia Analysis and Pattern Recognition (MAPR), Hanoi, Vietnam, 15–16 October 2021; pp. 1–6. [Google Scholar]
- Huhtanen, J.T.; Nyman, M.; Doncenco, D.; Hamedian, M.; Kawalya, D.; Salminen, L.; Sequeiros, R.B.; Koskinen, S.K.; Pudas, T.K.; Kajander, S.; et al. Deep learning accurately classifies elbow joint effusion in adult and pediatric radiographs. Sci. Rep. 2022, 12, 11803. [Google Scholar] [CrossRef]
- Wei, D.; Wu, Q.; Wang, X.; Tian, M.; Li, B. Accurate Instance Segmentation in Pediatric Elbow Radiographs. Sensors 2021, 21, 7966. [Google Scholar] [CrossRef]
- Joseph, D.; Nkubli, F.; Christian, N. Radiation Dose Surveys for Adult Radiography Examinations in two Nigerian Hospitals. In Proceedings of the European Congress of Radiology-ECR, Vienna, Austria, 28 February–4 March 2018. [Google Scholar]
- Dai, Q.; Pu, Y.-F.; Rahman, Z.; Aamir, M. Fractional-order fusion model for low-light image enhancement. Symmetry 2019, 11, 574. [Google Scholar] [CrossRef]
- England, J.R.; Gross, J.S.; White, E.A.; Patel, D.B.; England, J.T.; Cheng, P.M. Detection of traumatic pediatric elbow joint effusion using a deep convolutional neural network. Am. J. Roentgenol. 2018, 211, 1361–1368. [Google Scholar] [CrossRef]
- Kim, D.; MacKinnon, T. Artificial intelligence in fracture detection: Transfer learning from deep convolutional neural networks. Clin. Radiol. 2018, 73, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Badgeley, M.A.; Zech, J.R.; Oakden-Rayner, L.; Glicksberg, B.S.; Liu, M.; Gale, W.; McConnell, M.V.; Percha, B.; Snyder, T.M.; Dudley, J.T. Deep learning predicts hip fracture using confounding patient and healthcare variables. NPJ Digit. Med. 2019, 2, 31. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Irvin, J.; Bagul, A.; Ding, D.; Duan, T.; Mehta, H.; Yang, B.; Zhu, K.; Laird, D.; Ball, R.L.; et al. Mura dataset: Towards radiologist-level abnormality detection in musculoskeletal radiographs. arXiv 2018, arXiv:1712.06957v2. [Google Scholar]
- Guan, B.; Yao, J.; Zhang, G.; Wang, X. Thigh fracture detection using deep learning method based on new dilated convolutional feature pyramid network. Pattern Recognit. Lett. 2019, 125, 521–526. [Google Scholar] [CrossRef]
- Raza, M.; Sharif, M.; Yasmin, M.; Khan, M.A.; Saba, T.; Fernandes, S.L. Appearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learning. Future Gener. Comput. Syst. 2018, 88, 28–39. [Google Scholar] [CrossRef]
- Liaqat, A.; Khan, M.A.; Shah, J.H.; Sharif, M.; Yasmin, M.; Fernandes, S.L. Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection. J. Mech. Med. Biol. 2018, 18, 1850038. [Google Scholar] [CrossRef]
- Naqi, S.; Sharif, M.; Yasmin, M.; Fernandes, S.L. Lung nodule detection using polygon approximation and hybrid features from CT images. Curr. Med. Imaging 2018, 14, 108–117. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Yasmin, M.; Fernandes, S.L. Big data analysis for brain tumor detection: Deep convolutional neural networks. Future Gener. Comput. Syst. 2018, 87, 290–297. [Google Scholar] [CrossRef]
- Ansari, G.J.; Shah, J.H.; Yasmin, M.; Sharif, M.; Fernandes, S.L. A novel machine learning approach for scene text extraction. Future Gener. Comput. Syst. 2018, 87, 328–340. [Google Scholar] [CrossRef]
- Bokhari, S.T.F.; Sharif, M.; Yasmin, M.; Fernandes, S.L. Fundus image segmentation and feature extraction for the detection of glaucoma: A new approach. Curr. Med. Imaging 2018, 14, 77–87. [Google Scholar] [CrossRef]
- Jain, V.K.; Kumar, S.; Fernandes, S.L. Extraction of emotions from multilingual text using intelligent text processing and computational linguistics. J. Comput. Sci. 2017, 21, 316–326. [Google Scholar] [CrossRef]
- Fernandes, S.L.; Gurupur, V.P.; Lin, H.; Martis, R.J. A novel fusion approach for early lung cancer detection using computer aided diagnosis techniques. J. Med. Imaging Health Inform. 2017, 7, 1841–1850. [Google Scholar] [CrossRef]
- Raja, N.; Rajinikanth, V.; Fernandes, S.L.; Satapathy, S.C. Segmentation of breast thermal images using Kapur’s entropy and hidden Markov random field. J. Med. Imaging Health Inform. 2017, 7, 1825–1829. [Google Scholar] [CrossRef]
- Rajinikanth, V.; Madhavaraja, N.; Satapathy, S.C.; Fernandes, S.L. Otsu’s multi-thresholding and active contour snake model to segment dermoscopy images. J. Med. Imaging Health Inform. 2017, 7, 1837–1840. [Google Scholar] [CrossRef]
- Shah, J.H.; Chen, Z.; Sharif, M.; Yasmin, M.; Fernandes, S.L. A novel biomechanics-based approach for person re-identification by generating dense color sift salience features. J. Mech. Med. Biol. 2017, 17, 1740011. [Google Scholar] [CrossRef]
- Fernandes, S.L.; Bala, G.J. A comparative study on various state of the art face recognition techniques under varying facial expressions. Int. Arab. J. Inf. Technol. 2017, 14, 254–259. [Google Scholar]
- Lindsey, R.; Daluiski, A.; Chopra, S.; Lachapelle, A.; Mozer, M.; Sicular, S.; Hanel, D.; Gardner, M.; Gupta, A.; Hotchkiss, R.; et al. Deep neural network improves fracture detection by clinicians. Proc. Natl. Acad. Sci. USA 2018, 115, 11591–11596. [Google Scholar] [CrossRef]
- Amin, J.; Anjum, M.A.; Sharif, M.; Kadry, S.; Nam, Y.; Wang, S. Convolutional Bi-LSTM Based Human Gait Recognition Using Video Sequences. CMC-Comput. Mater. Contin. 2021, 68, 2693–2709. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Anjum, M.A.; Nam, Y.; Kadry, S.; Taniar, D. Diagnosis of COVID-19 infection using three-dimensional semantic segmentation and classification of computed tomography images. Comput. Mater. Contin. 2021, 68, 2451–2467. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Anjum, M.A.; Raza, M.; Bukhari, S.A.C. Convolutional neural network with batch normalization for glioma and stroke lesion detection using MRI. Cogn. Syst. Res. 2020, 59, 304–311. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Raza, M.; Saba, T.; Rehman, A. Brain tumor classification: Feature fusion. In Proceedings of the International Conference on Computer and Information Sciences (ICCIS), Aljouf, Saudi Arabia, 3–4 April 2019; pp. 1–6. [Google Scholar]
- Amin, J.; Sharif, M.; Yasmin, M.; Ali, H.; Fernandes, S.L. A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. J. Comput. Sci. 2017, 19, 153–164. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Yasmin, M.; Fernandes, S.L. A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognit. Lett. 2020, 139, 118–127. [Google Scholar] [CrossRef]
- Muhammad, N.; Sharif, M.; Amin, J.; Mehboob, R.; Gilani, S.A.; Bibi, N.; Javed, H.; Ahmed, N. Neurochemical Alterations in Sudden Unexplained Perinatal Deaths—A Review. Front. Pediatrics 2018, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Saba, T.; Mohamed, A.S.; El-Affendi, M.; Amin, J.; Sharif, M. Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 2020, 59, 221–230. [Google Scholar] [CrossRef]
- Sharif, M.; Amin, J.; Raza, M.; Anjum, M.A.; Afzal, H.; Shad, S.A. Brain tumor detection based on extreme learning. Neural Comput. Appl. 2020, 32, 15975–15987. [Google Scholar] [CrossRef]
- Sharif, M.; Amin, J.; Raza, M.; Yasmin, M.; Satapathy, S.C. An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognit. Lett. 2020, 129, 150–157. [Google Scholar] [CrossRef]
- Umer, M.J.; Amin, J.; Sharif, M.; Anjum, M.A.; Azam, F.; Shah, J.H. An integrated framework for COVID-19 classification based on classical and quantum transfer learning from a chest radiograph. Concurr. Comput. Pract. Exp. 2021, 34, e6434. [Google Scholar] [CrossRef]
- Adams, M.; Chen, W.; Holcdorf, D.; McCusker, M.W.; Howe, P.D.; Gaillard, F. Computer vs human: Deep learning versus perceptual training for the detection of neck of femur fractures. J. Med. Imaging Radiat. Oncol. 2019, 63, 27–32. [Google Scholar] [CrossRef]
- Urakawa, T.; Tanaka, Y.; Goto, S.; Matsuzawa, H.; Watanabe, K.; Endo, N. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skelet. Radiol. 2019, 48, 239–244. [Google Scholar] [CrossRef]
- Gan, K.; Xu, D.; Lin, Y.; Shen, Y.; Zhang, T.; Hu, K.; Zhou, K.; Bi, M.; Pan, L.; Wu, W.; et al. Artificial intelligence detection of distal radius fractures: A comparison between the convolutional neural network and professional assessments. Acta Orthop. 2019, 90, 394–400. [Google Scholar] [CrossRef]
- Ebsim, R.; Naqvi, J.; Cootes, T.F. Automatic detection of wrist fractures from posteroanterior and lateral radiographs: A deep learning-based approach. In Proceedings of the International Workshop on Computational Methods and Clinical Applications in Musculoskeletal Imaging, Granada, Spain, 16 September 2018; pp. 114–125. [Google Scholar]
- Tomita, N.; Cheung, Y.Y.; Hassanpour, S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med. 2018, 98, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, U.; Bhat, N.S.; Gudigar, A.; Acharya, U.R. Automated system for the detection of thoracolumbar fractures using a CNN architecture. Future Gener. Comput. Syst. 2018, 85, 184–189. [Google Scholar] [CrossRef]
- Taves, J.; Skitch, S.; Valani, R. Determining the clinical significance of errors in pediatric radiograph interpretation between emergency physicians and radiologists. Can. J. Emerg. Med. 2018, 20, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Rayan, J.C.; Reddy, N.; Kan, J.H.; Zhang, W.; Annapragada, A. Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making. Radiol. Artif. Intell. 2019, 1, e180015. [Google Scholar] [CrossRef]
- Lee, S.H.; Yun, S.J. Diagnostic performance of ultrasonography for detection of pediatric elbow fracture: A meta-analysis. Ann. Emerg. Med. 2019, 74, 493–502. [Google Scholar] [CrossRef]
- Chartrand, G.; Cheng, P.M.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep learning: A primer for radiologists. Radiographics 2017, 37, 2113–2131. [Google Scholar] [CrossRef]
- Luong, H.H.; Le, L.T.T.; Nguyen, H.T.; Hua, V.Q.; Nguyen, K.V.; Bach, T.N.P.; Nguyen, T.N.A.; Nguyen, H.T.Q. Transfer Learning with Fine-Tuning on MobileNet and GRAD-CAM for Bones Abnormalities Diagnosis. In Proceedings of the Computational Intelligence in Security for Information Systems Conference, Asan, Korea, 29 June–1 July 2022; pp. 171–179. [Google Scholar]
- Jia, Y.; Wang, H.; Chen, W.; Wang, Y.; Yang, B. An attention-based cascade R-CNN model for sternum fracture detection in X-ray images. CAAI Trans. Intell. Technol. 2022. [Google Scholar] [CrossRef]
- Kandel, I.; Castelli, M.; Popovič, A. Musculoskeletal images classification for detection of fractures using transfer learning. J. Imaging 2020, 6, 127. [Google Scholar] [CrossRef]
- Ghoti, K.; Baid, U.; Talbar, S. MURA: Bone Fracture Segmentation Using a U-net Deep Learning in X-ray Images. In Techno-Societal 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 519–531. [Google Scholar]
- Ananda, A.; Ngan, K.H.; Karabağ, C.; Ter-Sarkisov, A.; Alonso, E.; Reyes-Aldasoro, C.C. Classification and visualisation of normal and abnormal radiographs; A comparison between eleven convolutional neural network architectures. Sensors 2021, 21, 5381. [Google Scholar] [CrossRef]
- Liang, S.; Gu, Y. Towards robust and accurate detection of abnormalities in musculoskeletal radiographs with a multi-network model. Sensors 2020, 20, 3153. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Praveena, K.S. A Classical Hierarchy method for Bone X-Ray Image Classification using SVM. Int. Res. J. Eng. Technol. (IRJET) 2017, 4, 991–993. [Google Scholar]
- Wang, C.; Li, Z.; Dey, N.; Li, Z.; Ashour, A.S.; Fong, S.J.; Sherratt, R.S.; Wu, L.; Shi, F. Histogram of oriented gradient based plantar pressure image feature extraction and classification employing fuzzy support vector machine. J. Med. Imaging Health Inform. 2018, 8, 842–854. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:physics/1804.02767. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Cao, Y.; Wang, H.; Moradi, M.; Prasanna, P.; Syeda-Mahmood, T.F. Fracture detection in x-ray images through stacked random forests feature fusion. In Proceedings of the IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA, 16–19 April 2015; pp. 801–805. [Google Scholar]
- Umadevi, N.; Geethalakshmi, S. Multiple classification system for fracture detection in human bone X-ray images. In Proceedings of the Third International Conference on Computing, Communication and Networking Technologies (ICCCNT’12), Karur, India, 26–28 July 2012; pp. 1–8. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Jin, Q.; Xu, Z.; Cai, W. An Improved Whale Optimization Algorithm with Random Evolution and Special Reinforcement Dual-Operation Strategy Collaboration. Symmetry 2021, 13, 238. [Google Scholar] [CrossRef]
- Prakash, D.B.; Lakshminarayana, C. Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alex. Eng. J. 2017, 56, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, U.R.; Dhakad, A.; Chouhan, N.; Upadhyay, R. Fiber wireless (FiWi) access network: ONU placement and reduction in average communication distance using whale optimization algorithm. Heliyon 2019, 5, e01311. [Google Scholar] [CrossRef]
- Guan, B.; Zhang, G.; Yao, J.; Wang, X.; Wang, M. Arm fracture detection in X-rays based on improved deep convolutional neural network. Comput. Electr. Eng. 2020, 81, 106530. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Irvin, J.; Bagul, A.; Ding, D.; Duan, T.; Mehta, H.; Yang, B.; Zhu, K.; Laird, D.; Ball, R.L.; et al. Mura: Large dataset for abnormality detection in musculoskeletal radiographs. arXiv 2017, arXiv:physics/1712.06957. [Google Scholar]
- Solovyova, A.; Solovyov, I. X-Ray bone abnormalities detection using MURA dataset. arXiv 2020, arXiv:physics/2008.03356. [Google Scholar]
- Banga, D.; Waiganjo, P. Abnormality detection in musculoskeletal radiographs with convolutional neural networks (ensembles) and performance optimization. arXiv 2019, arXiv:1908.02170v1. [Google Scholar]
- Mehr, G. Automating Abnormality Detection in Musculoskeletal Radiographs through Deep Learning. arXiv 2020, arXiv:physics/2010.12030. [Google Scholar]
- He, M.; Wang, X.; Zhao, Y. A calibrated deep learning ensemble for abnormality detection in musculoskeletal radiographs. Sci. Rep. 2021, 11, 9097. [Google Scholar] [CrossRef] [PubMed]
- Karthik, K.; Kamath, S.S. MSDNet: A deep neural ensemble model for abnormality detection and classification of plain radiographs. J. Ambient. Intell. Humaniz. Comput. 2022, 1–15. [Google Scholar] [CrossRef]
Solutions | 10 |
Total iterations | 100 |
Threshold | 0.5 |
Lower bound | 0 |
Upper bound | 1 |
Kernel of Classifiers | Selected Parameters |
---|---|
Wide neural network (WNN) | Number of fully connected layers = 1 Size of first layer = 100 Activation unit = ReLU Limit of iterations = 1000 |
Support vector machine (SVM) | Kernel = Cubic Scale of kernel = Automatic Constraint level of box = 1 |
K-nearest neighbor (KNN) | One = Neighboured Euclidean distance |
Classifier | Accuracy % | Precision % | F1 Score % | Specificity % | Sensitivity % | Kappa Score |
---|---|---|---|---|---|---|
Fine KNN | 95.3 | 95 | 95 | 95.0 | 95.6 | 0.906 |
Cubic SVM | 85.1 | 87 | 85 | 92.7 | 87.7 | 0.802 |
WNN | 90.1 | 93 | 90 | 86.7 | 83.5 | 0.703 |
Classifier | Accuracy % | Precision % | F1 Score % | Specificity % | Sensitivity % | Kappa Score |
---|---|---|---|---|---|---|
Fine KNN | 97.1 | 96 | 97 | 96 | 97 | 0.94 |
Cubic SVM | 91.4 | 93 | 91 | 93 | 89 | 0.82 |
WNN | 86.5 | 87 | 86 | 87 | 85 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Amin, J.; Sharif, M.; Yasmin, M.; Kadry, S.; Anjum, S. Fractured Elbow Classification Using Hand-Crafted and Deep Feature Fusion and Selection Based on Whale Optimization Approach. Mathematics 2022, 10, 3291. https://doi.org/10.3390/math10183291
Malik S, Amin J, Sharif M, Yasmin M, Kadry S, Anjum S. Fractured Elbow Classification Using Hand-Crafted and Deep Feature Fusion and Selection Based on Whale Optimization Approach. Mathematics. 2022; 10(18):3291. https://doi.org/10.3390/math10183291
Chicago/Turabian StyleMalik, Sarib, Javeria Amin, Muhammad Sharif, Mussarat Yasmin, Seifedine Kadry, and Sheraz Anjum. 2022. "Fractured Elbow Classification Using Hand-Crafted and Deep Feature Fusion and Selection Based on Whale Optimization Approach" Mathematics 10, no. 18: 3291. https://doi.org/10.3390/math10183291
APA StyleMalik, S., Amin, J., Sharif, M., Yasmin, M., Kadry, S., & Anjum, S. (2022). Fractured Elbow Classification Using Hand-Crafted and Deep Feature Fusion and Selection Based on Whale Optimization Approach. Mathematics, 10(18), 3291. https://doi.org/10.3390/math10183291