Next Article in Journal
Double Sources Queuing-Inventory System with Hybrid Replenishment Policy
Previous Article in Journal
Achieving Security in Proof-of-Proof Protocol with Non-Zero Synchronization Time
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Criterions-Based H-Tensors for Testing the Positive Definiteness of Multivariate Homogeneous Forms

College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(14), 2416; https://doi.org/10.3390/math10142416
Submission received: 20 May 2022 / Revised: 22 June 2022 / Accepted: 5 July 2022 / Published: 11 July 2022
(This article belongs to the Section Difference and Differential Equations)

Abstract

:
Positive definite homogeneous multivariate forms play an important role in polynomial problems and medical imaging, and the definiteness of forms can be tested using structured tensors. In this paper, we state the equivalence between the positive definite multivariate forms and the corresponding tensors, and explain the connection between the positive definite tensors with H -tensors. Then, based on the notion of diagonally dominant tensors, some criteria for H -tensors are presented. Meanwhile, with these links, we provide an iterative algorithm to test the positive definiteness of multivariate homogeneous forms and prove its validity theoretically. The advantages of the obtained results are illustrated by some numerical examples.

1. Introduction

Let C ( R ) be the complex (real) field and N = { 1 , 2 , , n } . A = ( a i 1 i 2 i m ) is called an mth-order n-dimensional complex (real) tensor [1,2], if
a i 1 i 2 i m C ( R ) ,
where i t = 1 , , n for t = 1 , , m . It is denoted by A C [ m , n ] ( R [ m , n ] ) . Tensor A = ( a i 1 i 2 i m ) C [ m , n ] is called symmetric [3], if
a i 1 i 2 i m = a π ( i 1 i 2 i m ) , π Π m ,
where Π m is the permutation group of m indices. Tensor I = ( δ i 1 i 2 i m ) C [ m , n ] is called the unit tensor [4], if
δ i 1 i 2 i m = 1 , if i 1 = = i m , 0 , otherwise .
Tensor A is called a diagonally dominant tensor, if
| a i i i | i 2 , , i m N δ i i 2 i m = 0 | a i i 2 i m | = R i ( A ) , i N .
A is strictly diagonally dominant if all strict inequalities in ( 1 ) hold. If there exists a number λ C and a non-zero vector x = ( x 1 , x 2 , , x n ) T C n , such that
A x m 1 = λ x [ m 1 ] ,
then λ is called an eigenvalue of A and x is called the eigenvector of A associated with λ [5,6,7], where A x m 1 and λ x [ m 1 ] are vectors, whose ith components are
( A x m 1 ) i = i 2 , , i m N a i i 2 i m x i 2 x i m , ( x [ m 1 ] ) i = x i m 1 .
When λ R and x R n , we call λ an H-eigenvalue of A and x an H-eigenvector of A associated with λ [1].
An mth degree homogeneous polynomial of n variables f ( x ) can be defined as
f ( x ) A x m = i 1 , i 2 , , i m N a i 1 i 2 i m x i 1 x i 2 x i m ,
where A = ( a i 1 i 2 i m ) C [ m , n ] is symmetric and x = ( x 1 , x 2 , , x n ) R n [8]. When m is even, we call that f ( x ) is positive definite if
f ( x ) > 0 , x R n , x 0 .
The tensor A is called positive definite if f ( x ) is positive definite [8].
The positive definiteness of multivariate polynomial f ( x ) plays an important role in automatical control and polynomial problems [9,10]. However, when n 4 and m 4 , it is difficult to test the positive definiteness for multivariate forms. To solve this problem, Qi [1] provided that f ( x ) as ( 2 ) is positive definite, if and only if the real symmetric tensor A is positive definite, and presented an eigenvalue way to identify the positive definiteness of A with even m (see Proposition 1).
Proposition 1
([1]).Let A R [ m , n ] be even-order symmetric. Then A is positive definite if and only if its H-eigenvalues are all positive.
However, it is not easy to compute all H-eigenvalues of A when m and n are large. Recently, Li et al. [11] gave a sufficient condition of the positive definiteness for an even-order symmetric tensor by H -tensors (see Proposition 2). Here, a tensor A is called an H -tensor [12] if there is a positive vector x = ( x 1 , x 2 , , x n ) T R n satisfying
a i i i x i m 1 > i 2 , , i m N δ i i 2 i m = 0 a i i 2 i m x i 2 x i m , i N .
Proposition 2
([11]).Let A = ( a i 1 i 2 i m ) R [ m , n ] be even-order symmetric with positive diagonal entries. If A is an H -tensor, then A is positive definite.
Subsequently, based on the notion of diagonally dominant tensors, various criterions for H -tensors are established [13,14,15,16,17,18,19,20,21], which only depend on the elements of the tensors, and are very effective for testing whether a tensor is an H -tensor or not. For example,
Theorem 1
([17]).Let A = ( a i 1 i m ) C [ m , n ] . If
| a i i i | > i 2 , i 3 , , i m N m 1 \ N 1 m 1 δ i i 2 i m = 0 | a i i 2 i m | + i 2 i 3 i m N 1 m 1 max j { i 2 , i 3 , , i m } R j ( A ) | a j j j | | a i i 2 i m | , i N 2 ( A ) ,
where
N 1 ( A ) = { i N : | a i i i | > R i ( A ) } , N 2 ( A ) = { i N : | a i i i | R i ( A ) } ,
then A is an H -tensor.
Theorem 2
([18]).Let A = ( a j 1 j m ) C [ m , n ] . If
| a j j j | r j > j 2 j 3 j m N 0 m 1 | a j j 2 j m | + j 2 j 3 j m N 2 m 1 δ j j 2 j m = 0 max t { j 2 , j 3 , , j m } { r t } | a j j 2 j m | + j 2 j 3 j m N 1 m 1 max t { j 2 , j 3 , , j m } { l t } | a j j 2 j m | , j N 2 ( A ) ,
and
| a i i i | i 2 i 3 i m N 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | , i N 1 ( A ) ( o r N 1 ( A ) = ) ,
where
N 1 ( A ) = { i N : 0 < | a i i i | = R i ( A ) } , N 2 ( A ) = { i N : 0 < | a i i i | < R i ( A ) } , N 3 ( A ) = { i N : | a i i i | > R i ( A ) } ,
then A is an H -tensor.
Theorem 3
([21]).Let A = ( a j 1 j m ) C [ m , n ] . If
| a i i i | > R i ( A ) R i ( A ) | a i i i | q i 2 i 3 i m N 0 m 1 | a i i 2 i m | + i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | + i 2 i 3 i m N 3 m 1 max j { i 2 , i 3 , , i m } t P j ( A ) | a j j j | | a i i 2 i m | , i N 2 ( A ) ,
and for i N 1 ( A ) , | a i i i | i 2 i 3 i m N 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | , where N 1 ( A ) , N 2 ( A ) , and N 3 ( A ) are that as in Theorem 2, then A is an H -tensor.
We know that these criterions can be used just for a finite class of H -tensors; that is, there are a lot of H -tensors that cannot be identified by these existing criteria, and therefore, many authors consider whether there exists a more effective iterative scheme for testing H -tensors [13,14,15,16,17,18,19,20]. However, some algorithms need to use a parameter ϵ , and it is hard to choose a suitable value for ϵ , and an inappropriate ϵ may result in a large computing quantity. In this paper, we continue to propose some new sufficient conditions of H -tensors, and we present a new non-parameter-involved iterative algorithm for testing H -tensors. The obtained results extend the corresponding results in [17,18,19,20,21]. The validity of new methods is theoretically guaranteed, and the numerical experiments show their efficiency.
The remainder of this paper is organized as follows. In Section 2, we recall some related definitions, lemmas, and notations, which will be used in the proof of this paper. In Section 3, we explore some new sufficient conditions for identifying H -tensors, only relying on the elements of such tensors. In Section 4, we further propose a non-parameter implementable iterative algorithm for identifying H -tensors; the efficiency of the scheme is theoretically guaranteed in this section. In Section 5, as an application, we provide new conditions for testing the positive definiteness of even-order homogeneous multivariate forms. Some conclusions are summarized in Section 6.

2. Preliminaries

Now, some definitions, lemmas, and notations are recalled, which will be used in the sequel.
Definition 1
([4]).Let A = ( a i 1 i m ) C [ m , n ] . A is called reducible, if there exists a non-empty proper index subset I N , such that
a i 1 i 2 i m = 0 , i 1 I , i 2 , , i m I .
We call A irreducible if A is not reducible.
Definition 2
([2]).Let A = ( a i 1 i m ) C [ m , n ] and X = d i a g ( x 1 , x 2 , , x n ) . Denote
B = ( b i 1 i m ) = A X m 1 , b i 1 i 2 i m = a i 1 i 2 i m x i 2 x i 3 x i m , i j N , j N .
We call B the product of the tensor A and the matrix X.
Definition 3
([13]).Let A = ( a i 1 i 2 i m ) C [ m , n ] . For i , j N ( i j ) , if there exist indices k 1 , k 2 , , k r with
i 2 , , i m N δ k s i 2 i m = 0 , k s + 1 { i 2 , , i m } a k s i 2 i m 0 , s = 0 , 1 , , r ,
where k 0 = i ,   k r + 1 = j , then it is called that there is a non-zero elements chain from i to j.
Lemma 1
([11]).If A C [ m , n ] is strictly diagonally dominant, then A is an H -tensor.
Lemma 2
([2]).Let A = ( a i 1 i m ) C [ m , n ] . If there exists a positive diagonal matrix X, such that A X m 1 is an H -tensor, then A is an H -tensor.
Lemma 3
([11]).Let A = ( a i 1 i m ) C [ m , n ] . If A is irreducible,
| a i i | R i ( A ) , i N ,
and strict inequality holds for at least one i, then A is an H -tensor.
Lemma 4
([13]).Let A = ( a i 1 i m ) C [ m , n ] . If
(i)
a i i i R i A , i N ,
(ii)
N 1 ( A ) = i N : a i i i > R i A ,
(iii)
For any i N 1 ( A ) , there exists a non-zero elements chain form i to j, such that j N 1 ( A ) , then A is an H -tensor.
For convenience, some notations that will be used in the following are given below. Let S be a non-empty subset of N, and let N \ S be the complement of S in N. Given a tensor A = ( a i 1 i m ) C [ m , n ] with a i i i 0 , k Z + = 0 , 1 , 2 , , and
R i ( A ) = i 2 , , i m N δ i i 2 i m = 0 | a i i 2 i m | = i 2 , , i m N | a i i 2 i m | | a i i i | , N 1 ( A ) = { i N : | a i i i | = R i ( A ) } , N 2 ( A ) = { i N : | a i i i | < R i ( A ) } , N 3 ( A ) = { i N : | a i i i | > R i ( A ) } , N m 1 \ S m 1 = i 2 i 3 i m : i 2 i 3 i m N m 1 a n d i 2 i 3 i m S m 1 , N 0 m 1 = N m 1 \ N 2 m 1 N 3 m 1 , y i = a i i i R i A , m = max i N 2 ( A ) a i i i R i A ,
and
ω 0 = max i N 3 ( A ) i 2 i 3 i m N 2 m 1 a i i 2 i m + i 2 i 3 i m N 0 m 1 a i i 2 i m + i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 a i i 2 i m a i i i , ω k + 1 = max i N 3 ( A ) i 2 i 3 i m N 2 m 1 a i i 2 i m + i 2 i 3 i m N 0 m 1 a i i 2 i m + ω k i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 a i i 2 i m a i i i , θ k + 1 , i = i 2 i 3 i m N 2 m 1 a i i 2 i m + i 2 i 3 i m N 0 m 1 a i i 2 i m + ω k i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 a i i 2 i m a i i i ,
and
δ = max ω k + 1 , m , P k + 1 , i ( A ) = i 2 i 3 i m N 2 m 1 a i i 2 i m + i 2 i 3 i m N 0 m 1 a i i 2 i m + ω k i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 a i i 2 i m , h k + 1 = i 2 i 3 i m N 2 m 1 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m P k + 1 , i ( A ) i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 max j i 2 , i 2 , , i m P k + 1 , j ( A ) a j j j a i i 2 i m .

3. Criteria for Identifying H -Tensors

In this section, we give some new criteria for identifying H -tensors.
Theorem 4.
Let A = ( a i 1 i m ) C [ m , n ] . If there exists k Z + , such that
a i i i y i > i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + h k + 1 i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m , i N 2 ( A ) ,
and there exists i 2 i 3 i m N 3 m 1 for any i N 1 ( A ) , such that a i i 2 i 3 i m 0 ( o r N 1 ( A ) = ) , then A is an H -tensor.
Proof. 
According to the definitions of ω k + 1 , P k + 1 , i A , by 0 < ω k + 1 ω k < 1 and 0 < m < 1 , for i N 3 ( A ) , we have
ω k + 1 a i i i i 2 i 3 i m N 2 m 1 a i i 2 i m + i 2 i 3 i m N 0 m 1 a i i 2 i m + ω k i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 a i i 2 i m ,
so, P k + 1 , i A ω k + 1 a i i i i N 3 ( A ) , and
0 < P k + 1 , i A a i i i ω k + 1 δ < 1 , i N 3 ( A ) .
From the definition of h k + 1 , we obtain:
i 2 i 3 i m N 2 m 1 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m P k + 1 , i ( A ) i 2 i 3 i m N 1 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m P k + 1 , j ( A ) a j j j a i i 2 i m δ i 2 i 3 i m N 2 m 1 a i i 2 i m + i 2 i 3 i m N 0 m 1 a i i 2 i m P k + 1 , i ( A ) i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m P k + 1 , j ( A ) a j j j a i i 2 i m = δ P k + 1 , i ( A ) ω k i 2 i 3 i m N 1 m 1 δ i i 2 i m = 0 a i i 2 i m P k + 1 , i ( A ) i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m P k + 1 , j ( A ) a j j j a i i 2 i m δ P k + 1 , i ( A ) ω k + 1 i 2 i 3 i m N 1 m 1 δ i i 2 i m = 0 a i i 2 i m P k + 1 , i ( A ) i 2 i 3 i m N 1 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m P k + 1 , j ( A ) a j j j a i i 2 i m = δ P k + 1 , i ( A ) i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m P k + 1 , j ( A ) a j j j a i i 2 i m P k + 1 , i ( A ) i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m P k + 1 , j ( A ) a j j j a i i 2 i m < 1 ,
so 0 h k + 1 < 1 , and
h k + 1 P k + 1 , i ( A ) i 2 i 3 i m N 2 m 1 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + h k + 1 i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m P k + 1 , j ( A ) a j j j a i i 2 i m .
For any i N 2 ( A ) , let
ϕ i ( A ) = 1 i 2 i 3 i m N 3 m 1 a i i 2 i m ( a i i i y i i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m δ i 2 i 3 i m N 0 m 1 a i i 2 i m h k + 1 i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m ) .
When i 2 i 3 i m N 1 m 1 a i i 2 i m = 0 , denote ϕ i ( A ) = + . By (3) and (5), we have ϕ i ( A ) > 0 i N 2 ( A ) . Since 0 max i N 3 ( A ) h k + 1 θ k + 1 , i < δ , then there is a sufficiently small positive number ε , such that
0 < ε < min i N 2 ( A ) ϕ i ( A ) + , 0 < max i N 3 ( A ) ε + h k + 1 θ k + 1 , i < δ < 1 .
Let diagonal matrix X = d i a g ( x 1 , x 2 , , x n ) , where
x i = δ 1 m 1 , i N 1 ( A ) , y i 1 m 1 , i N 2 ( A ) , h k + 1 θ k + 1 , i + ε 1 m 1 , i N 3 ( A ) .
As ε + , x i + , which implies that X is a diagonal matrix with positive entries. Let B = ( b i 1 i 2 i m ) = A X m 1 . Next, we will prove that B is a strictly diagonally dominant tensor.
(1) For any i N 1 ( A ) , since
0 < max i N 2 ( A ) y i δ < 1 , 0 < max i N 3 ( A ) h k + 1 θ k + 1 , i + ε < δ < 1 ,
then
R i B = i 2 i 3 i m N 2 m 1 a i i 2 i m y i 2 1 m 1 y i m 1 m 1 + i 2 i 3 i m N 0 m 1 δ i i 2 i m = 0 a i i 2 i m x i 2 x i m + i 2 i 3 i m N 3 m 1 a i i 2 i m h k + 1 θ k + 1 , i 2 + ε 1 m 1 h k + 1 θ k + 1 , i m + ε 1 m 1 i 2 i 3 i m N 2 m 1 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 δ i i 2 i m = 0 a i i 2 i m + i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m h k + 1 θ k + 1 , j + ε a i i 2 i m < δ ( i 2 i 3 i m N 2 m 1 a i i 2 i m + i 2 i 3 i m N 0 m 1 δ i i 2 i m = 0 a i i 2 i m + i 2 i 3 i m N 3 m 1 a i i 2 i m ) = δ a i i i = b i i i .
(2) For any i N 2 ( A ) , if i 2 i 3 i m N 0 m 1 a i i 2 i m + i 2 i 3 i m N 1 m 1 a i i 2 i m = 0 , we have
R i B = i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 a i i 2 i m y i 2 1 m 1 y i m 1 m 1 i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m < y i a i i i = b i i i .
If i 2 i 3 i m N 0 m 1 a i i 2 i m + i 2 i 3 i m N 1 m 1 a i i 2 i m 0 , by Equality (5), we get
R i B = i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 a i i 2 i m y i 2 1 m 1 y i m 1 m 1 + i 2 i 3 i m N 0 m 1 a i i 2 i m x i 2 x i m + i 2 i 3 i m N 3 m 1 a i i 2 i m h k + 1 θ k + 1 , i 2 + ε 1 m 1 h k + 1 θ k + 1 , i m + ε 1 m 1 i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m h k + 1 θ k + 1 , j + ε a i i 2 i m = ε i 2 i 3 i m N 3 m 1 a i i 2 i m + i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + h k + 1 i 2 i 3 i m N 1 m 1 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m < ϕ i ( A ) i 2 i 3 i m N 3 m 1 a i i 2 i m + i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + h k + 1 i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m = y i a i i i = b i i i .
(3) For any i N 3 ( A ) , by Inequality (4), it holds that
R i B = i 2 i 3 i m N 2 m 1 a i i 2 i m y i 2 1 m 1 y i m 1 m 1 + i 2 i 3 i m N 0 m 1 a i i 2 i m x i 2 x i m + i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 a i i 2 i m h k + 1 θ k + 1 , i 2 + ε 1 m 1 h k + 1 θ k + 1 , i m + ε 1 m 1 i 2 i 3 i m N 2 m 1 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m h k + 1 θ k + 1 , j + ε a i i 2 i m = ε i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 a i i 2 i m + i 2 i 3 i m N 2 m 1 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + h k + 1 i 2 i 3 i m N 1 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m P k + 1 , j A a j j j a i i 2 i m ε i 2 i 3 i m N 3 m 1 a i i 2 i m + h k + 1 P k + 1 , i A < ε a i i i + h k + 1 P k + 1 , i A = b i i i .
Hence, by Inequalities (6)–(9), it holds that | b i i i | > R i ( B ) ( i N ) ; that is, B is a strictly diagonally dominant tensor. From Lemma 1, B is an H -tensor. By Lemma 2, A is an H -tensor. □
Theorem 5.
Let A = ( a i 1 i m ) C [ m , n ] be irreducible. If there exists k Z + such that
a i i i y i i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + h k + 1 i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m , i N 2 ( A ) ,
and at least one strict inequality in ( 10 ) holds, then A is an H -tensor.
Proof. 
Let diagonal matrix X = d i a g ( x 1 , x 2 , , x n ) , where
x i = δ 1 m 1 , i N 1 ( A ) , y i 1 m 1 , i N 2 ( A ) , h k + 1 θ k + 1 , i 1 m 1 , i N 3 ( A ) .
This shows that X is a diagonal matrix with positive entries. Let B = ( b i 1 i 2 i m ) = A X m 1 . Next, we prove that B is a diagonally dominant tensor.
(1) For i N 1 ( A ) , since
0 < max i N 2 ( A ) y i δ < 1 , 0 max i N 3 ( A ) h k + 1 θ k + 1 , i < δ < 1 ,
then
R i B = i 2 i 3 i m N 2 m 1 a i i 2 i m y i 2 1 m 1 y i m 1 m 1 + i 2 i 3 i m N 0 m 1 δ i i 2 i m = 0 a i i 2 i m x i 2 x i m + i 2 i 3 i m N 1 m 1 a i i 2 i m h k + 1 θ k + 1 , i 2 1 m 1 h k + 1 θ k + 1 , i m 1 m 1 i 2 i 3 i m N 2 m 1 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 δ i i 2 i m = 0 a i i 2 i m + h k + 1 i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m δ ( i 2 i 3 i m N 2 m 1 a i i 2 i m + i 2 i 3 i m N 0 m 1 δ i i 2 i m = 0 a i i 2 i m + i 2 i 3 i m N 3 m 1 a i i 2 i m ) = δ a i i i = b i i i .
(2) For i N 2 ( A ) , if i 2 i 3 i m N 0 m 1 a i i 2 i m + i 2 i 3 i m N 3 m 1 a i i 2 i m = 0 , we obtain
R i B = i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 a i i 2 i m y i 2 1 m 1 y i m 1 m 1 i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m y i a i i i = b i i i .
If i 2 i 3 i m N 0 m 1 a i i 2 i m + i 2 i 3 i m N 3 m 1 a i i 2 i m 0 , by Inequality (10), we get
R i B = i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 a i i 2 i m y i 2 1 m 1 y i m 1 m 1 + i 2 i 3 i m N 0 m 1 a i i 2 i m x i 2 x i m + i 2 i 3 i m N 3 m 1 a i i 2 i m h k + 1 θ k + 1 , i 2 1 m 1 h k + 1 θ k + 1 , i m 1 m 1 i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + h k + 1 i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m y i a i i i = b i i i .
(3) For i N 1 ( A ) , by Inequality (4), it holds that
R i B = i 2 i 3 i m N 2 m 1 a i i 2 i m y i 2 1 m 1 y i m 1 m 1 + i 2 i 3 i m N 0 m 1 a i i 2 i m x i 2 x i m + i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 a i i 2 i m h k + 1 θ k + 1 , i 2 1 m 1 h k + 1 θ k + 1 , i m 1 m 1 i 2 i 3 i m N 2 m 1 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + h k + 1 i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m h k + 1 P k + 1 , j A = b i i i .
Therefore, by Inequalities (11)–(14), we conclude that | b i i i | R i ( B ) for all i N , and for all i N 2 ( B ) , at least one strict inequality in (12) and (13) holds; that is, there exists an i 0 N 2 ( B ) satisfying | b i 0 i 0 i 0 | > R i 0 ( B ) .
Meanwhile, A is irreducible, and so is B . By Lemma 3, we obtain that B is an H -tensor. From Lemma 2, A is also an H -tensor. □
Let
J ( A ) = i N 2 ( A ) : | a i i i | y i > i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y i a i i 2 i m + δ i 2 i 3 i m N 0 m 1 | a i i 2 i m | + h k + 1 i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m .
Theorem 6.
Let A = ( a i 1 i m ) C [ m , n ] . For any i N 2 ( A ) , there exists k Z + such that
a i i i y i i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j i 2 , i 3 , , i m y j a i i 2 i m + δ i 2 i 3 i m N 0 m 1 a i i 2 i m + h k + 1 i 2 i 3 i m N 3 m 1 max j i 2 , i 3 , , i m θ k + 1 , j a i i 2 i m ,
and for i N \ J ( A ) , there is a non-zero elements chain from i to j satisfying j J ( A ) , then A is an H -tensor.
Proof. 
Denote diagonal matrix X = d i a g ( x 1 , x 2 , , x n ) as that in the proof of Theorem 5. This shows that X is a diagonal matrix with positive entries. Mark B = ( b i 1 i 2 i m ) = A X m 1 . Similar to the process in proof of Theorem 4, it holds that b i i i R i ( B ) ( i N ) , and there is at least one b i i i > R i ( B ) .
On the other hand, if b i i i = R i ( B ) , then i N \ J ( A ) . We know that there exists a chain of non-zero elements from i to j in A , with j J ( A ) . So, there is also a non-zero element chain from i to j in B satisfying b j j j > R j ( B ) . Hence, B satisfies the conditions of Lemma 4; that is, B is an H -tensor. From Lemma 2, A is also an H -tensor. □
Example 1.
Given tensor A = ( a i 1 i 2 i 3 ) C [ 3 , 3 ] , defined as follows:
A = [ A ( 1 , : , : ) , A ( 2 , : , : ) , A ( 3 , : , : ) ] ,
A ( 1 , : , : ) = 12 3 1 2 4 0 2 0 6 , A ( 2 , : , : ) = 1 0 0 0 6 0 0 0 3 , A ( 3 , : , : ) = 1 1 0 0 1 0 0 0 20 .
By calculations, we have
| a 111 | = 12 , R 1 ( A ) = 18 , | a 222 | = 6 , R 2 ( A ) = 4 , | a 333 | = 20 , R 3 ( A ) = 3 .
Then N 3 ( A ) = { 2 , 3 } , N 2 ( A ) = { 1 } , N 1 ( A ) = , and
y 1 = 2 3 , m = 2 3 , ω 0 = 2 3 , ω 1 = 1 2 , ω 2 = 5 12 θ 3 , 2 = 9 24 , θ 3 , 3 = 29 240 , P 3 , 2 = 9 4 , P 3 , 3 = 29 20 , h 3 = 32 49 .
When i = 1 and k = 2 , since
i 2 i 3 N 2 2 δ 1 i 2 i 3 = 0 max j i 2 , i 3 y j a 1 i 2 i 3 + δ i 2 i 3 N 0 2 a 1 i 2 i 3 + h k + 1 i 2 i 3 N 3 2 max j i 2 , i 3 θ k + 1 , j a 1 i 2 i 3 = 8 × 2 3 + 32 49 × 9 24 × 10 = 1144 147 < 8 = a 111 y 1 ,
then A satisfies the conditions of Theorem 4; that is, A is an H -tensor. However,
i 2 i 3 N 2 / N 3 2 δ 1 i 2 i 3 = 0 a 1 i 2 i 3 + i 2 i 3 N 3 2 max j { i 2 , i 3 } R j ( A ) a j j j a 1 i 2 i 3 = 44 3 > 12 = a 111 ,
i 2 i 3 N 0 2 | a 1 i 2 i 3 | + i 2 i 3 N 2 2 δ 1 i 2 i 3 = 0 max j { i 2 , i 3 } { r j } | a 1 i 2 i 3 | + i 2 i 3 N 3 2 max j { i 2 , i 3 } { t j } | a 1 i 2 i 3 | = 82 9 > 4 = | a 111 | r 1 ,
and
R 1 ( A ) R 1 ( A ) | a 111 | q i 2 i 3 i m N 0 2 | a 1 i 2 i 3 | + i 2 i 3 i m N 2 2 δ 1 i 2 i 3 = 0 | a 1 i 2 i 3 | + i 2 i 3 N 3 2 max j { i 2 , i 3 } t P j ( A ) | a j j j | | a 1 i 2 i 3 | = 18 18 12 1 3 ( 2 + 2 + 3 + 1 ) + 4 21 ( 4 + 6 ) = 96 7 > 12 = | a 111 | .
Therefore, A does not satisfy the conditions of Theorem 1 (Theorem 1 in [17]), Theorem 2 (Theorem 1 in [18]), and Theorem 3 (Theorem 2 in [21]), respectively.
Remark 1.
By Example 1, it is easy to see that Theorem 4 is better than the other ones, but it is difficult to say in advance which one is better. However, from Theorem 4, we conclude that 0 δ < 1 , 0 h k + 1 1 , and
h k + 1 θ k + 1 , i < R i ( A ) | a i i i | < 1 , i N 3 ( A ) .
Thus, all conditions in Theorem 4 are weaker than those in Theorem 1.

4. An Iterative Algorithm for Testing H -Tensors

In this section, we propose a new iterative scheme for testing H -tensors based on the obtained results in Section 3.
The theoretical analysis of Algorithm 1 can be obtained from the following result.
Algorithm 1: A new iterative scheme for identifying H -tensors.
INPUT: A = ( a i 1 i 2 i m ) C [ m , n ] with a i i i 0 , i N .
OUTPUT: diagonal matrix X = X ( 0 ) X ( 1 ) X ( t 1 ) with positive entries if A is an H -tensor.
Step 1.
If N 3 ( A ) = , then A is not an H -tensor, stop; otherwise,
Step 2.
Set A ( 0 ) = A , X ( 0 ) = I , t = 1 .
Step 3.
Compute A ( t ) = A ( t 1 ) X ( t 1 ) m 1 = ( a i 1 i 2 i m ( t ) ) .
Step 4.
If N 2 ( A ( t ) ) = , then A is an H -tensor, stop; otherwise,
Step 5.
If N 1 ( A ( t ) ) = , then A is not an H -tensor, stop; otherwise,
Step 6.
Compute y i ( t ) , δ ( t ) , h k + 1 ( t ) , P k + 1 , i ( A ( t ) ) , k Z + , i N .
Step 7.
If there exists k Z + satisfying
| a i i i ( t ) | y i ( t ) > δ ( t ) i 2 i m N 0 m 1 ( A ( t ) ) | a i i 2 i m ( t ) | + i 2 i m N 2 m 1 ( A ( t ) ) δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } y j ( t ) | a i i 2 i m ( t ) |                                                           + h k + 1 ( t ) i 2 i m N 3 m 1 ( A ( t ) ) max j { i 2 , i 3 , , i m } P k + 1 , j ( A ( t ) ) | a j j j ( t ) | | a i i 2 i m ( t ) | , i N 2 ( A ( t ) ) ,
and
| a i i i ( t ) | i 2 i m N 3 m 1 ( A ( t ) ) δ i i 2 i m = 0 | a i i 2 i m ( t ) | , i N 1 ( A ( t ) ) ( o r N 1 ( A ( t ) ) = ) ,
then A is an H -tensor, stop; otherwise,
Step 8.
Set X ( t ) = d i a g ( x 1 ( t ) , x 2 ( t ) , , x n ( t ) ) , compute
x i ( t ) = δ ( t ) 1 m 1 , i N 1 ( A ( t ) ) , y i ( t ) 1 m 1 , i N 2 ( A ( t ) ) , h k + 1 ( t ) P k + 1 , i ( A ( t ) ) | a i i i ( t ) | 1 m 1 , i N 3 ( A ( t ) ) .
Step 9.
Set X ( t ) = d i a g ( x 1 ( t ) , x 2 ( t ) , , x n ( t ) ) , t = t + 1 ; go to step 3.
Theorem 7.
Let A = ( a i 1 i m ) C [ m , n ] be an H -tensor. Then, Algorithm 1 terminates after a finite number of iterations by producing a strictly diagonally dominant tensor.
Proof. 
Without loss of generality, suppose that A is a non-negative tensor. Instead, the Algorithm 1 yields an infinite sequence { A ( t ) } , with
A ( t ) = A ( 0 ) X ( 1 ) m 1 X ( 2 ) m 1 X ( t 1 ) m 1 .
By the fact that each diagonal entry of matrix X ( t ) is less than 1, we have
A = A ( 0 ) = A ( 1 ) A ( t ) 0 .
Hence, the sequence { A ( t ) } has a limitation,
B = lim t + A ( t ) 0 ,
where B = A X m 1 , X = X ( 1 ) X ( 2 ) X ( t ) is a diagonal matrix with positive entries.
Next, we will prove that
lim t + N 3 ( A ( t ) ) = N 3 ( B ) = .
In fact, suppose that lim t + N 3 ( A ( t ) ) , then
1 δ ( t ) > 0 , 1 y i ( t ) > 0 , 1 h k + 1 ( t ) P k + 1 , i ( A ( t ) ) | a i i i ( t ) | > 0 .
Therefore, there exists i N 1 ( A ( p ) ) and positive numbers ε 1 , ε 2 , ε 3 , such that
a i i i ( t ) 1 δ ( t ) > ε 1 , a i i i ( t ) 1 y i ( t ) > ε 2 , a i i i ( t ) 1 h k + 1 ( t ) P k + 1 , i ( A ( t ) ) | a i i i ( t ) | > ε 3 .
Denote ε 0 = min { ε 1 , ε 2 , ε 3 } . Based on Algorithm 1, for i N , it holds that
0 < a i i i ( t + 1 ) = a i i i ( t ) δ ( t ) < a i i i ( t ) ε 1 < a i i i ( t ) ε 0 , 0 < a i i i ( t + 1 ) = a i i i ( t ) y i ( t ) < a i i i ( t ) ε 2 < a i i i ( t ) ε 0 , 0 < a i i i ( t + 1 ) = a i i i ( t ) h k + 1 ( t ) P k + 1 , i ( A ( t ) ) | a i i i ( t ) | < a i i i ( t ) ε 3 < a i i i ( t ) ε 0 .
Therefore,
a i i i ( 0 ) = a i i i ( 1 ) > a i i i ( 2 ) + ε 0 > > a i i i ( t ) + ( t 1 ) ε 0 .
When t + , one has a i i i ( 0 ) + . A contradiction arrives, which means that
lim t + N 3 ( A ( t ) ) = N 3 ( B ) = ,
that is,
| b i i i | R i ( B ) , i N .
Hence, B is not an H -tensor [11]. Meanwhile, if A is an H -tensor, then there is a diagonal matrix D with positive entries satisfying A D m 1 = B ( X 1 D ) m 1 is a strictly diagonally dominant tensor. Hence, B is an H -tensor, which is a contradiction. Therefore, Algorithm 1 stops after a finite steps of iterations. □
Example 2
([17]).Randomly generate 100 mth-order n-dimensional tensors, such that the elements of each tensor satisfy
a i 1 i 2 i m ( n m × 0.6 , n m × 0.6 ) , i f i 1 = = i m , ( 1 , 1 ) , o t h e r w i s e .
The numerical results of Algorithm 1 are shown in Table 1, where t 1 , t 2 , and t 3 denote the number of tensors that the input tensor is, or is not an H -tensor, and undetermined, within a certain number of iterations, respectively.
Example 3
([14]).Randomly generate fourth-order 10-dimensional tensors satisfying that the elements of each tensor are from [ 1 , 1 ] . For each tensor, the following modifications are satisfied: Each tensor can be symmetrized, and all diagonal entries can be replaced with absolute value; all diagonal entries of each tensor can be amplified to a degree such that some of these tensors are positive definite.
The numerical results of Algorithm 1 are shown in Table 2, where "Y", "N", and symbol "-" denote the output result that the input tensor is or is not positive definite and undetermined within a certain number of iterations, respectively.
According to Table 1 and Table 2, we easily observe that Algorithm 1 is much more efficient for identifying H -tensors and the positive definiteness of the input tensor in most cases.

5. An Application: The Positive Definiteness of Homogeneous Polynomial Forms

In this section, based on the above results for H -tensors, new sufficient conditions for testing the positive definiteness of even-order real symmetric tensors are provided.
In view of Proposition 2, the following result is easily obtained.
Theorem 8.
Let A = ( a i 1 i m ) C [ m , n ] be an even-order symmetric tensor with a i i i > 0 ( i N ) . Tensor A is positive definite if A satisfies one of the following conditions:
( i )
the conditions of Theorem 4;
( i i )
the conditions of Theorem 5;
( i i i )
the conditions of Theorem 6.
Example 4.
Consider the following sixth-degree homogeneous polynomial
f ( x ) = A x 6 = 8 x 1 6 + 17 x 2 6 + 200 x 3 6 + 62 x 4 6 + 10 x 5 6 + 20 x 6 6 6 x 1 x 2 5 30 x 1 x 3 5 6 x 1 x 4 5 6 x 2 x 3 5 6 x 2 x 4 5 24 x 3 x 4 5 20 x 2 3 x 3 3 + 6 x 1 5 x 4 ,
where x = ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) T and A = ( a i 1 i 2 i 3 i 4 i 5 i 6 ) C [ 6 , 6 ] is a real symmetric tensor with elements defined as follows:
a 111111 = 8 , a 222222 = 17 , a 333333 = 200 , a 444444 = 62 , a 555555 = 10 , a 666666 = 20 , a 122222 = a 212222 = a 221222 = a 222122 = a 222212 = a 222221 = 1 , a 133333 = a 313333 = a 331333 = a 333133 = a 333313 = a 333331 = 5 , a 144444 = a 414444 = a 441444 = a 444144 = a 444414 = a 444441 = 1 , a 233333 = a 323333 = a 332333 = a 333233 = a 333323 = a 3333332 = 1 , a 244444 = a 424444 = a 442444 = a 444244 = a 444424 = a 444442 = 1 , a 344444 = a 434444 = a 444344 = a 444344 = a 444434 = a 444443 = 4 , a 222333 = a 223233 = a 223323 = a 223332 = a 232233 = a 232323 = a 232332 = 1 , a 233223 = a 233232 = a 233322 = a 333222 = a 332322 = a 332232 = a 332223 = 1 , a 323322 = a 323232 = a 323223 = a 322332 = a 322323 = a 322233 = 1 , a 411111 = a 141111 = a 114111 = a 111411 = a 111141 = a 111141 = 1 ,
and other a i 1 i 2 i 3 i 4 i 5 i 6 = 0 . Since
R 1 ( A ) = 12 , R 2 ( A ) = 17 , R 3 ( A ) = 44 , R 4 ( A ) = 31 , R 5 ( A ) = 0 , R 6 ( A ) = 0 ,
then N 3 ( A ) = { 3 , 4 , 5 , 6 } , N 2 ( A ) = { 1 } , N 1 ( A ) = { 2 } . By calculations, we have
y 1 = 2 3 , m = 2 3 , ω 0 = 1 2 , ω 1 = 21 62 , h 2 = 961 1449 , θ 2 , 3 = 641 3100 , θ 2 , 4 = 551 1922 , P 2 , 3 = 1282 31 , P 2 , 4 = 551 31 ,
and
i 2 i 3 i 4 i 5 i 6 N 2 5 δ i i 2 i m = 0 max j i 2 , i 3 , i 4 , i 5 , i 6 y j a 1 i 2 i 3 i 4 i 5 i 6 + δ i 2 i 3 i 4 i 5 i 6 N 0 5 a 1 i 2 i 3 i 4 i 5 i 6 + h k + 1 i 2 i 3 i 4 i 5 i 6 N 3 5 max j i 2 , i 3 , i 4 , i 5 , i 6 θ k + 1 , j a 1 i 2 i 3 i 4 i 5 i 6 = 6 × 2 3 + 6 × 961 1449 × 551 1922 = 2 , 386 , 163 464 , 163 < 8 × 2 3 = 16 3 = a 111111 y 1 .
So, A satisfies the conditions of Theorem 4. By Theorem 8, we have that A is positive definite; that is, f ( x ) is positive definite.
However, for i = 1 , we have
a 111111 = 8 < 12 = R 1 A ,
a 444444 a 111111 R 1 A + | a 144444 | = 186 < 31 = R 4 A | a 144444 | ,
a 111111 = 8 < 9 = i 2 i 3 i 4 i 5 i 6 N 5 / N 3 5 δ 2 i 2 i 3 i 4 i 5 i 6 = 0 a 1 i 2 i 3 i 4 i 5 i 6 + i 2 i 3 i 4 i 5 i 6 N 3 5 max j { i 2 , i 3 , i 4 , i 5 , i 6 } R j ( A ) a j j j j j j a 1 i 2 i 3 i 4 i 5 i 6 ,
and
| a 111111 | r 1 = 8 3 < 4867 651 = i 2 i 3 i 4 i 5 i 6 N 0 5 | a 1 i 2 i 3 i 4 i 5 i 6 | + i 2 i 3 i 4 i 5 i 6 N 2 5 δ 1 i 2 i 3 i 4 i 5 i 6 = 0 max j { i 2 , i 3 , i 4 , i 5 , i 6 } { r j } | a 1 i 2 i 3 i 4 i 5 i 6 | + i 2 i 3 i 4 i 5 i 6 N 3 5 max j { i 2 , i 3 , i 4 , i 5 , i 6 } { t j } | a 1 i 2 i 3 i 4 i 5 i 6 | .
Hence, we cannot use Theorem 3 in in [19], Theorem 4 in in [20], Theorem 1 in [17], and Theorem 1 in [18] to identify the positive definiteness of A , respectively.

6. Conclusions

In this paper, we presented new criterions for H -tensors, which are used for testing the positive definiteness of an homogeneous polynomial. We also proposed a new non-parameter iterative algorithm for H -tensors, which can stop within finite steps. These methods were expressed in terms of the elements of A , so they can be checked easily.

Author Contributions

Conceptualization, D.B.; Data curation, D.B.; Formal analysis, D.B.; Funding acquisition, F.W.; Investigation, F.W.; Methodology, F.W.; Resources, F.W.; Software, D.B.; Supervision, F.W.; Validation, F.W.; Writing-original draft, D.B. and F.W.; Writing-review & editing, F.W. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by Guizhou Provincial Science and Technology Projects (20191161, 20181079), the Talent Growth Project Department of Guizhou Province (2016168), the Foundation of Education Department of Guizhou Province (2018143), and the Research Foundation of Guizhou Minzu University (2019YB08).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are grateful to editors and referees for their valuable suggestions and comments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Qi, L.Q. Eigenvalues of a real supersymetric tensor. J. Symb. Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef] [Green Version]
  2. Kannana, M.R.; Mondererb, N.S.; Bermana, A. Some properties of strong -tensors and general -tensors. Linear Algebra Appl. 2015, 476, 42–55. [Google Scholar] [CrossRef]
  3. Li, C.Q.; Qi, L.Q.; Li, Y.T. MB-tensors and MB0-tensors. Linear Algebra Appl. 2015, 484, 141–153. [Google Scholar] [CrossRef]
  4. Yang, Y.N.; Yang, Q.Z. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 2010, 31, 2517–2530. [Google Scholar] [CrossRef]
  5. Kolda, T.G.; Mayo, J.R. Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 2011, 32, 1095–1124. [Google Scholar] [CrossRef] [Green Version]
  6. Lim, L.H. Singular values and eigenvalues of tensors: A variational approach. In Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 13–15 December 2005; pp. 129–132. [Google Scholar]
  7. Qi, L.Q.; Wang, F.; Wang, Y.J. Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 2009, 118, 301–316. [Google Scholar] [CrossRef] [Green Version]
  8. Ni, Q.; Qi, L.; Wang, F. An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Automat. Control. 2008, 53, 1096–1107. [Google Scholar] [CrossRef] [Green Version]
  9. Ni, G.Y.; Qi, L.Q.; Wang, F.; Wang, Y.J. The degree of the E-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 2007, 329, 1218–1229. [Google Scholar] [CrossRef] [Green Version]
  10. Zhang, L.P.; Qi, L.Q.; Zhou, G.L. -tensors and some applications. SIAM J. Matrix Anal. Appl. 2014, 35, 437–542. [Google Scholar] [CrossRef]
  11. Li, C.Q.; Wang, F.; Zhao, J.X. Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math. 2014, 255, 1–14. [Google Scholar] [CrossRef]
  12. Ding, W.Y.; Qi, L.Q.; Wei, Y.M. -tensors and nonsingular -tensors. Linear Algebra Appl. 2013, 439, 3264–3278. [Google Scholar] [CrossRef]
  13. Wang, F.; Sun, D.S.; Zhao, J.X.; Li, C.Q. New practical criteria for -tensors and its application. Linear Multilinear Algebra 2017, 65, 269–283. [Google Scholar] [CrossRef]
  14. Zhang, K.L.; Wang, Y.J. An -tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms. J. Comput. Appl. Math. 2016, 305, 1–10. [Google Scholar] [CrossRef]
  15. Wang, Y.J.; Zhou, G.L.; Caccetta, L. Nonsingular -tensor and its criteria. J. Ind. Manag. Optim. 2016, 12, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
  16. Wang, Y.J.; Zhang, K.L.; Sun, H.C. Criteria for strong -tensors. Front. Math. China. 2016, 11, 577–592. [Google Scholar] [CrossRef]
  17. Li, Y.T.; Liu, Q.L.; Qi, L.Q. Programmable criteria for strong -tensors. Numer. Algor. 2017, 74, 199–221. [Google Scholar] [CrossRef]
  18. Wang, F.; Sun, D.S.; Xu, Y.M. Some criteria for identifying -tensors and its applications. Calcolo 2019, 56, 19. [Google Scholar] [CrossRef]
  19. Qi, L.Q.; Song, Y.S. An even order symmetric -tensor is positive definite. Linear Algebra Appl. 2014, 457, 303–312. [Google Scholar] [CrossRef]
  20. Li, C.Q.; Li, Y.T. Double -tensors and quasi-double -tensors. Linear Algebra Appl. 2015, 466, 343–356. [Google Scholar] [CrossRef]
  21. Bai, D.J.; Wang, F. New methods based -tensors for identifying the positive definiteness of multivariate homogeneous forms. AIMS Math. 2021, 6, 10281–10295. [Google Scholar] [CrossRef]
Table 1. Numerical results of Example 2.
Table 1. Numerical results of Example 2.
m (Order)n (Dimension) t 1 t 2 t 3 CPU Time (s)
468301757.3690
4107802255.8954
4157302760.4535
4206703384.5546
44081019120.3584
567302746.5728
5108201850.4879
51585015235.0412
52064036300.2586
54075025276.8509
669307285.4570
61085015254.2385
61567033106.8336
62078022331.1455
64081019298.4535
Table 2. Numerical results of Example 3.
Table 2. Numerical results of Example 3.
AmplificationIteration StepsPositive DefinitenessCPU Time (s)
5001N 0.04358
100010Y 0.05870
100019 0.09405
10003N 0.06088
15002Y 0.05203
15005Y 0.05019
15008N 0.05976
15003Y 0.06257
18001Y 0.05250
20002Y 0.05147
20001Y 0.05055
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Bai, D.; Wang, F. New Criterions-Based H-Tensors for Testing the Positive Definiteness of Multivariate Homogeneous Forms. Mathematics 2022, 10, 2416. https://doi.org/10.3390/math10142416

AMA Style

Bai D, Wang F. New Criterions-Based H-Tensors for Testing the Positive Definiteness of Multivariate Homogeneous Forms. Mathematics. 2022; 10(14):2416. https://doi.org/10.3390/math10142416

Chicago/Turabian Style

Bai, Dongjian, and Feng Wang. 2022. "New Criterions-Based H-Tensors for Testing the Positive Definiteness of Multivariate Homogeneous Forms" Mathematics 10, no. 14: 2416. https://doi.org/10.3390/math10142416

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop