Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator
Abstract
:1. Introduction
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
Bi-Univalent Functions
2. Coefficient Bounds
3. Fekete-Szegö Inequalities
4. Conclusions
- For we have the function class of starlike functions associated with the sine functions (see [43]).
- For we have the function class of starlike functions associated with the nephroid (see [44]).
- For we have the function class of starlike functions associated with the lemniscate of Bernoulli (see [45]).
- For we have the function class of starlike functions associated with the exponintial functions (see [46]).
- For we have the function class of starlike functions associated with the crescent shaped region (see [47]).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Samko, G.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus: Integral and differential equations of fractional order. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: New York, NY, USA, 1997; pp. 277–290. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bonilla, B.; Rivero, M.; Rodríguez-Germá, L.; Trujillo, J.J. Fractional differential equations as alternative models to nonlinear differential equations. Appl. Math. Comput. 2007, 10, 79–88. [Google Scholar] [CrossRef]
- Sălăgean, G. Subclasses of Univalent Functions, Complex Analysis: Fifth Romanian—Finnish Seminar, Part I (Bucharest,1981), Lecture Notes in Mathematics 1013; Springer: New York, NY, USA, 1983. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series; John Willey & Sons Inc.: New York, NY, USA, 1994. [Google Scholar]
- Erdélyi, A.; Kober, H. Some remarks on Hankel transforms. Q. J. Math. 1940, 11, 212–221. [Google Scholar] [CrossRef]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Carlson, B.C.; Shafer, D.B. Starlike and prestarlike Hypergeometric functions. J. Math. Anal. 1984, 15, 737–745. [Google Scholar] [CrossRef]
- Choi, J.H.; Saigo, M.; Srivastava, H.M. Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 2002, 276, 432–445. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Noor, K.I. On new classes of integral operators. J. Nat. Geom. 1999, 16, 71–80. [Google Scholar]
- Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Livingston, A.E. On the radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 1966, 17, 352–357. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Inter. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Catas, A. On a certain differential sandwich theorem associated with a new generalized derivative operator. Gen. Math. 2009, 17, 83–95. [Google Scholar]
- Komatu, Y. On analytical prolongation of a family of operators. Mathematica 1990, 32, 141–145. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. (Eds.) Aspects of Contemporary Complex Analysis; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981. [Google Scholar]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1973. [Google Scholar] [CrossRef] [Green Version]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Xu, Q.-H.; Gui, Y.-C.; Srivastava, H.M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 2012, 25, 990–994. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.-H.; Xiao, H.-G.; Srivastava, H.M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 2012, 218, 11461–11465. [Google Scholar] [CrossRef]
- Lupaş, A.A.; El-Deeb, S.M. Subclasses of bi-univalent functions connected with integral operator based upon Lucas polynomial. Symmetry 2022, 14, 622. [Google Scholar] [CrossRef]
- El-Deeb, S.M. Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a q-analogue of Bessel function. Abstr. Appl. Anal. 2020, 2020, 8368951. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboaca, T.; El-Matary, B.M. Maclaurin coefficient estimates of bi-Univalent functions connected with the q-derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- El-Deeb, S.M.; El-Matary, B.M. Subclasses of bi-univalent functions associated with q-confluent hypergeometric distribution based upon the Horadam polynomials. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 82–93. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Noshiro, K. On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. Ser. 1934, 35, 129–155. [Google Scholar] [CrossRef]
- Yamaguchi, K. On functions satisfying ℜ{f(z)/z}>0. Proc. Am. Math. Soc. 1966, 17, 588–591. [Google Scholar]
- Zaprawa, P. On the Fekete-Szego¨ problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin. 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin, 1992); Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Ali, R.M.; Leo, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda star-like and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a Nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Sokól, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike function. Zesz. Nauk. Oficyna Wydawnicza al. Powstancow Warszawy 1996, 19, 101–105. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. On coefficient estimates for a certain class of starlike functions. Hacettepe. J. Math. Statist. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.; Murugusundaramoorthy, G.; El-Deeb, S.M. Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator. Mathematics 2022, 10, 2241. https://doi.org/10.3390/math10132241
Alharbi A, Murugusundaramoorthy G, El-Deeb SM. Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator. Mathematics. 2022; 10(13):2241. https://doi.org/10.3390/math10132241
Chicago/Turabian StyleAlharbi, Asma, Gangadharan Murugusundaramoorthy, and Sheza. M. El-Deeb. 2022. "Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator" Mathematics 10, no. 13: 2241. https://doi.org/10.3390/math10132241
APA StyleAlharbi, A., Murugusundaramoorthy, G., & El-Deeb, S. M. (2022). Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator. Mathematics, 10(13), 2241. https://doi.org/10.3390/math10132241