
����������
�������

Citation: Alharbi, A.;

Murugusundaramoorthy, G.;

El-Deeb, S.M. Yamaguchi -Noshiro

Type Bi-Univalent Functions

Associated with
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Abstract: We defined two new subclasses of analytic bi-univalent function class Σ, in the open unit
disk related with the Sălăgean–Erdély–Kober operator. The bounds on initial coefficients |a2|, |a3| and
|a4| for the functions in these new subclasses of Σ are investigated. Using the estimates of coefficients
a2, a3, we also discuss the Fekete-Szegö inequality results for the function classes defined in this
paper. Relevant connections of these results, presented here as corollaries, are new and not studied in
association with Sălăgean-Erdély–Kober operator for the subclasses defined earlier.
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1. Introduction

Let A denote the class of holomorphic functions in open unit disk

∆ := {z : z ∈ C and |z| < 1}

be given by the power series

f (z) = z +
∞

∑
n=2

anzn (z ∈ ∆), (1)

satisfying normalization conditions (see [1])

f (0) = f ′(0)− 1 = 0,

normalization f (0) = 0 geometrically amounts to only a translation of the image domain,
and f ′(0) = 1 corresponds to the rotation of the image domain.The subclass ofA consisting
of all univalent functions f in ∆ is denoted by S .

Let f1, f2 ∈ A and be assumed as

f1(z) =
∞

∑
n=0

an,1zn and g(z) =
∞

∑
n=0

an,2zn (z ∈ ∆),
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are convoluted f1 ∗ f2 if the product is defined as

( f1 ∗ f2)(z) =
∞

∑
n=0

an,1 an,2zn = ( f2 ∗ f1)(z) (z ∈ ∆).

Recently, several authors have contributed to the growth of fractional calculus (dif-
ferentiation and integration of arbitrary orders). Fractional calculus often find its applica-
tions in the field of engineering, such as capacitor theory, electrode–electrolyte interface
models, feedback amplifiers, generalized voltage dividers, fractional order models of neu-
rons, the electric conductance of biological systems, fitting experimental data, medical,
and memory characteristics [2–6]. Fractional derivative operators, which are frequently de-
fined through fractional integral operators, help in gathering useful information about the
progress of the resources and processes involved in the phenomena. Many fractional deriva-
tive operators, such as the Riemann–Liouville fractional derivative operator associated with
hypergeometric type function, the Caputo (CF) and Erdélyi–Kober (EK) fractional operators
have been proposed and studied extensively in the literature. The Riemann–Liouville (R–L)
fractional integral operator of order ε > 0 , which is one of the most used and studied
(see [2–7]) operators, is given by:

V ε
ε+ f (t) =

1
Γ(ε)

t∫
ε

(t− κ)ε−1 f (κ)dκ, t > ε.

First, we recall the following differential operators:
In 1983, Sălăgean [8] introduced differential operator Dm : A → A defined by

D0 f (z) = f (z), D1 f (z) = D f (z) = z f ′(z),

Dm f (z) = D(Dm−1 f (z))′ = z(Dm−1 f (z))′, m ∈ N = {1, 2, 3, . . . }.

We note that

Dm f (z) = z +
∞

∑
n=2

nmanzn, m ∈ N0 = N∪ {0}. (2)

Let the integral operator be
I$
` : A → A

by

I$
` f (z) =

 `+1
$ z1− `+1

$
z∫

0
t
`+1

$ −2 f (t)dt; $ 6= 0,

f (z), $ = 0.

The differential operator is
D$
` : A → A

by

D$
` f (z) =

 $
`+1 z2− `+1

$ d
dz

(
z
`+1

$ −1 f (z)
)

; $ 6= 0,

f (z), $ = 0.

For ` > −1; $ > 0, and m ∈ Z = {0,±1,±2,±3, · · · }; let

Dm
`,$ : A → A

by

Dm
`,$ f (z) =


D$
`D

m−1
`,$ f (z) m ∈ Z+;

I$
`D

m+1
`,$ f (z), m ∈ Z−;

f (z), m = 0.
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The following Erdély–Kober type ([9] (Section 5)) integral operator is used throughout
this paper:

Definition 1. Erdély–Kober operator (EK): Let for ϑ > 0, a, c ∈ C, be such that <(c− a) ≥ 0,
andR(a) > −ϑ an Erdély–Kober type integral operator is

V a,c
ϑ : A → A

given by

V a,c
ϑ f (z) =

Γ(c + ϑ)

Γ(a + ϑ)

1
Γ(c− a)

1∫
0

(1− t)c−a−1ta−1 f (ztϑ)dt, ϑ > 0. (3)

For f ∈ A assumed by (1), by simple computation, we have

V a,c
ϑ f (z) = z +

∞

∑
n=2

Γ(c + ϑ)Γ(a + nϑ)

Γ(a + ϑ)Γ(c + nϑ)
anzn (z ∈ ∆)

= z +
∞

∑
n=2

Υa,c
ϑ (n)anzn (z ∈ ∆), (4)

where

Υa,c
ϑ (n) =

Γ(c + ϑ)Γ(a + nϑ)

Γ(a + ϑ)Γ(c + nϑ)
.

By fixing c = a, we obtain
V a,a

ϑ f (z) = f (z). (5)

Some applications and properties of the E–K fractional integral operator can be found
in [2–7,10] and references therein. Now, we exploit the concept of the Sălăgean-Erdély–
Kober fractional-order derivative(SEK) to define a new unified class of bi-univalent functions.

Definition 2. Sălăgean-Erdély–Kober operator (SEK): For m ∈ Z = {0,±1,±2,±3, · · · };
ϑ > 0,<(c− a) ≥ 0, <(a) > −ϑ; ` > −1; $ > 0 and f ∈ A is assumed by (1), we have

Ξa,c,$
ϑ,m,` f (z) =

Γ(c + ϑ)

Γ(a + ϑ)

1
Γ(c− a)

1∫
0

(1− t)c−a−1ta−1Dm
`,$ f (ztϑ)dt, ϑ > 0

= z +
∞

∑
n=2

Γ(c + ϑ)Γ(a + nϑ)

Γ(a + ϑ)Γ(c + nϑ)

[
1 +

$(n− 1)
`+ 1

]m
anzn (z ∈ ∆)

= z +
∞

∑
n=2

Υa,c,$
ϑ,m,`anzn, (z ∈ ∆), (6)

where

Υn = Υa,c,$
ϑ,m,`(n) =

Γ(c + ϑ)Γ(a + nϑ)

Γ(a + ϑ)Γ(c + nϑ)

[
1 +

$(n− 1)
`+ 1

]m
. (7)

Particularly,

Υ2 = Υa,c,$
ϑ,m,`(2) =

[
1 +

$

`+ 1

]m Γ(c + ϑ)Γ(a + 2ϑ)

Γ(a + ϑ)Γ(c + 2ϑ)
. (8)

Υ3 = Υa,c,$
ϑ,m,`(3) =

[
1 +

2$

`+ 1

]m Γ(c + ϑ)Γ(a + 3ϑ)

Γ(a + ϑ)Γ(c + 3ϑ)
. (9)

Ξa,a,$
ϑ,m,` includes various differential and integral operators, as

illustrated below:
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Remark 1. By fixing m = 0, operator Ξa,a,$
ϑ,m,` ≡ V

a,c
ϑ , and suitably choosing parameters a, c, ϑ

we obtain

1. For a = ς; c = σ + ςϑ = 1, and σ ≥ 0; $ > 1 we obtain the operator Qσ
ς studied by

Jung et al. [11];
2. For a = σ− 1; c = ς− 1 and ϑ = 1, with σ; ς ∈ C ∈ Z0;Z0 = {0;−1;−2; · · · } we

obtain the operator Lσ,ς f (z) studied by Carlson and Shafer [12];
3. For a = ρ− 1; c = ` and ϑ = 1, with ρ > 0; ` > 1, we obtain the operator Vρ,` studied

by Choi et al. [13];
4. For a = σ; c = 0 and ϑ = 1, with σ > −1 we obtain the operator Dσ studied by

Ruscheweyh [14];
5. For a = 1; c = n ∈ N0 = {0, 1, 2, 3, · · · } and µ = 1, we obtain the operator Vn studied

in [15,16];
6. For a = ς; c = ς + 1 and ϑ = 1; we obtain the Bernardi integral operator [17] denoted

as Vς,1 ;
7. For a = 1; c = 2 and ϑ = 1, give the Libera integral operator [18] as V1,1 = I and

Livingston [19].

Remark 2. Let m ∈ N0 = {0, 1, 2, 3, · · · .} By fixing the values of a, c, ϑ as specified below, Ξa,c,$
ϑ,m,`

includes various operators as cited below:

1. By fixing ` = 0 we have Ξa,a,$
ϑ,m,` ≡ V

$
ϑ,m, Al-Oboudi operator [20].

2. Assuming $ = 1; ` = 0 then Ξa,a,$
ϑ,m,` ≡ V

m
ϑ , Salagean operator [8].

3. Assuming c = 0; ϑ = 1 then Ξa,0,$
1,m,` ≡ V

a,`
m,$, Catas operator [21].

4. By fixing $ = 1; ` = η and Ξa,a,$
ϑ,−m,` ≡ V

η+1
−m , Komatu operator [22].

Fractional calculus operators have fruitfully been applied in obtaining, for example,
the characterization properties, coefficient estimates, distortion inequalities, and convolu-
tional structures of various subclasses of analytic functions. In this article, we study the
subclasses of bi-univalent functions.

Bi-Univalent Functions Σ

The renowned Koebe one-quarter theorem (see [1]) asserts that the image of ∆ under
every univalent function f ∈ A contains a disk of radius 1

4 . Thus, the inverse of f ∈ A is a
univalent analytic function on the disk ∆ρ := {z : z ∈ C and |z| < ρ; ρ ≥ 1

4}. Consequently,
for each function f (z) = w ∈ σ, there is an inverse function f−1(w) of f (z) defined by

f−1( f (z)) = z (z ∈ ∆),

and
f ( f−1(w)) = w (w ∈ ∆ρ),

where
f−1(w) = w− a2w2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + . . . . (10)

A function f ∈ A is supposed to be bi-univalent in ∆ if both f and f−1 are univalent
in ∆.

Let Σ denotes the class of bi-univalent functions in ∆ given by (1). Note that the functions

f1(z) =
z

1− z
, f2(z) =

1
2

log
1 + z
1− z

, f3(z) = − log(1− z) (11)

with their corresponding inverses

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

e2w − 1
e2w + 1

, f−1
3 (w) =

ew − 1
ew (12)
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are elements of Σ. The concept of bi-univalent analytic functions was introduced by
Lewin [23] in 1967, and he showed that |a2| < 1.51. Subsequently, Brannan and Clu-
nie [24] conjectured that |a2| ≤

√
2. Netanyahu [25] , on the other hand, showed that

max f∈Σ |a2| = 4
3 . The coefficient estimate problem for each of the following Taylor–

Maclaurin coefficients:
|an| (n ∈ N \ {1, 2})

is presumably still an open problem. Recently, there has been interest in studying bi-
univalent function class Σ and obtained non-sharp coefficient estimates on the first two
coefficients |a2| and |a3| of (1). This subject was extensively discussed in the pioneering
work by Srivastava et al. [26], who revived the study of analytic and bi-univalent func-
tions in recent years. It was followed by many sequels to Srivastava et al. [26] (see, for
example, [27–36]), certain subclasses of the bi-univalent analytic functions class Σ were
introduced, and nonsharp estimates on the first two coefficients |a2| and |a3| were found.
The study of operators plays an significant role in geometric function theory. Many differ-
ential and integral operators can be written in terms of the convolution of certain analytic
functions. This formalism brings ease in further mathematical exploration, and helps in bet-
ter understanding the symmetric and geometric properties of such operators. Inspired by
the aforementioned works on bi-univalent functions, and by using Sălăgean-Erdély–Kober
operator in the present paper, we define two new subclasses as in Definitions 3 and 4 of
function class Σ, determine the estimates on coefficients |a2|, |a3|, and attempted to find
|a4| for the functions in these new subclasses of function class Σ. We also discussed the
Fekete-Szegö inequalities results [37] for f ∈ YN a,c,$

ϑ,m,`(ξ, t), and f ∈ YMa,c,$
ϑ,m,`(ζ, t). Further

we discussed the results several consequences of the results for the new subclasses of Σ that
are not studied in association with telephone numbers based on Sălăgean-Erdély–Kober
operator as illustrated in Definitions 5–8 .

Definition 3. For 0 < ξ ≤ 1, t ≥ 1, and f ∈ Σ be assumed by (1) is supposed to be in class
YN a,c,$

ϑ,m,`(ξ, t) if the following conditions are satisfied:∣∣∣∣∣ arg

(
(1− t)

Ξa,c,$
ϑ,m,` f (z)

z
+ t
(

Ξa,c,$
ϑ,m,` f (z)

)′)∣∣∣∣∣ < ξπ

2
, (13)

and ∣∣∣∣∣ arg

(
(1− t)

Ξa,c,$
ϑ,m,`g(w)

w
+ t
(

Ξa,c,$
ϑ,m,`g(w)

)′)∣∣∣∣∣ < ξπ

2
, (14)

where z,∈ ∆; w ∈ ∆ρ and g are the inverse of f given by (10).

Definition 4. For 0 < ζ ≤ 1, t ≥ 1; and f ∈ Σ are given by (1); then, f ∈ YMa,c,$
ϑ,m,`(ζ, t) if the

following conditions are satisfied:

<
(
(1− t)

Ξa,c,$
ϑ,m,` f (z)

z
+ t
(

Ξa,c,$
ϑ,m,` f (z)

)′)
> ζ (15)

and

<
(
(1− t)

Ξa,c,$
ϑ,m,`g(w)

w
+ t
(

Ξa,c,$
ϑ,m,`g(w)

)′)
> ζ, (16)

where z,∈ ∆; w ∈ ∆ρ and g is the inverse of f given by (10).

By fixing t = 1, we define a new subclass of Σ due to Noshiro [38].
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Definition 5. For 0 < ξ ≤ 1 and f ∈ Σ be given by (1) then f ∈ N a,c,$
ϑ,m,`(ξ) if it holds the

following conditions :∣∣∣∣ arg
((

Ξa,c,$
ϑ,m,` f (z)

)′)∣∣∣∣ < ξπ

2
and

∣∣∣∣ arg
((

Ξa,c,$
ϑ,m,`g(w)

)′)∣∣∣∣ < ξπ

2
, (17)

where z,∈ ∆; w ∈ ∆ρ and g is the inverse of f given by (10).

Definition 6. A function f ∈ Σ given by (1) then f ∈ Ma,c,$
ϑ,m,`(ζ) if it satisfy the

following conditions:

<
([

Ξa,c,$
ϑ,m,` f (z)

]′)
> ζ and <

([
Ξa,c,$

ϑ,m,`g(w)
]′)

> ζ, (18)

where z,∈ ∆; w ∈ ∆ρ and g is the inverse of f given by (10).

By fixing t = 0, we define a new subclass of Σ due to Yamaguchi [39].

Definition 7. For 0 < ξ ≤ 1 and f ∈ Σ, as assumed as (1); then, f ∈ Y a,c,$
ϑ,m,`(ξ) if the following

conditions hold:∣∣∣∣∣ arg

(
Ξa,c,$

ϑ,m,` f (z)

z

)∣∣∣∣∣ < ξπ

2
and

∣∣∣∣∣ arg

(
Ξa,c,$

ϑ,m,`g(w)

w

)∣∣∣∣∣ < ξπ

2
, (19)

where z,∈ ∆; w ∈ ∆ρ and g are the inverse of f given by (10).

Definition 8. For 0 ≤ ζ < 1 and a function f ∈ Σ given by (1); then, f ∈ X a,c,$
ϑ,m,`(ζ) if the

following conditions are satisfied:

<
(

Ξa,c,$
ϑ,m,` f (z)

z

)
> ζ and <

(
Ξa,c,$

ϑ,m,`g(w)

w

)
> ζ, (20)

where z,∈ ∆; w ∈ ∆ρ and g are the inverse of f given by (10).

2. Coefficient Bounds

In order to find the initial coefficient bounds, namely, |a2|, |a3| and |a4| for f ∈ YN a,c,$
ϑ,m,`(ξ, t)

and f ∈ YMa,c,$
ϑ,m,`(ζ, t) of Σ, we recall the following lemma:

Lemma 1. (see [1], p. 41) Let φ(z) = 1 + ∑∞
n=1 cnzn be in P , the class of all analytic functions

with <(φ(z)) > 0 (z ∈ ∆) and φ(0) = 1. Then,

|cn| ≤ 2 (n = 1, 2, 3, . . .).

This inequality is sharp ∀n. In particular, for φ(z) = 1+z
1−z = 1 + ∑∞

n=1 2zn. equality holds ∀n.

Theorem 1. Let f (z) given by (1) be in the class YN a,c,$
ϑ,m,`(ξ, t). Then

|a2| ≤
2ξ√

2ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2

, (21)

|a3| ≤
2ξ

(1 + 2t)Υ3
, (22)
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and

|a4| ≤
2ξ

(1 + 3t)Υ4

[
1 +

2(1− ξ)(1 + t)Υ2{6ξ(1 + 2t)Υ3 + (1− 2ξ)(1 + t)2Υ2
2}

3{2ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2}

3
2

]
. (23)

Proof. Let f ∈ YN a,c,$
ϑ,m,`(ξ, t). Hence, by Definition 3, there exists φ(z) and ψ(w) ∈ P

such that

(1− t)
Ξa,c,$

ϑ,m,` f (z)

z
+ t
(

Ξa,c,$
ϑ,m,` f (z)

)′
= [φ(z)]ξ (24)

and

(1− t)
Ξa,c,$

ϑ,m,`g(w)

w
+ t
(

Ξa,c,$
ϑ,m,`g(w)

)′
= [ψ(w)]ξ . (25)

Write
φ(z) = 1 + c1z + c2z2 + c3z3 + . . . (26)

and
ψ(w) = 1 + d1w + d2w2 + d3w3 + . . . . , (27)

Now, equating the coefficients in (24) and (25), we obtain

(1 + t)Υ2a2 = ξc1 (28)

(1 + 2t)Υ3a3 = ξc2 +
ξ(ξ − 1)

2
c2

1 (29)

(1 + 3t)Υ4a4 = ξc3 + ξ(ξ − 1)c1c2 +
ξ(ξ − 1)(ξ − 2)

6
c3

1, (30)

and
− (1 + t)Υ2a2 = ξd1 (31)

(1 + 2t)Υ3(2a2
2 − a3) = ξd2 +

ξ(ξ − 1)
2

d2
1 (32)

− (1 + 3t)Υ4(5a3
2 − 5a2a3 + a4) = ξd3 + ξ(ξ − 1)d1d2 +

ξ(ξ − 1)(ξ − 2)
6

d3
1. (33)

From (28) and (31), we obtain

a2 =
ξc1

(1 + t)Υ2
= − ξ

(1 + t)Υ2
d1 (34)

which implies
c1 = −d1.

Squaring and adding (28), (31), we obtain

a2
2 =

ξ2

(1 + t)2Υ2
2
(c2

1 + d2
1). (35)

Adding (29) and (32), we obtain

2(1 + 2t)Υ3a2
2 = ξ(c2 + d2) +

ξ(ξ − 1)
2

(c2
1 + d2

1).

Substitute the value of a2 from (34) in (35) and noting that c2
1 = d2

1, we observe that

c2
1 =

(1 + t)2Υ2
2(c2 + d2)

2ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2

. (36)
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By applications of the triangle inequality and Lemma 1 give

|c1| ≤
2(1 + t)Υ2√

2ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2

. (37)

Thus, (34) gives

|a2| ≤
2ξ√

2ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2

. (38)

In order to find the bound on |a3|, subtracting (32) from (29) with c1 = −d1 gives

2(1 + 2t)Υ3a3 = 2(1 + 2t)Υ3a2
2 + ξ(c2 − d2)

a3 = a2
2 +

ξ(c2 − d2)

2(1 + 2t)Υ3
. (39)

Using (34) and (36) in (39) after simplification yields

2(1 + 2t)Υ3a3 =
2ξ2Υ3(1 + 2t)

2ξ(1 + 2t)Υ3 + (1 + t)2Υ2
2(1− ξ)

(c2 + d2) + ξ(c2 − d2)

=

(
2ξ2Υ3(1 + 2t)

2ξ(1 + 2t)Υ3 + (1 + t)2Υ2
2(1− ξ)

+ ξ

)
c2

+

(
2ξ2Υ3(1 + 2t)

2ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2
− ξ

)
d2

=
ξ
[{

4ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2
}

c2 − (1− ξ)(1 + t)2Υ2
2d2
]

2ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2

By the application of a triangle inequality to the above equation,

|a3| ≤
ξ
[{

4ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2
}
|c2|+ (1− ξ)(1 + t)2Υ2

2|d2|
]

2(1 + 2t)Υ3
[
2ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2

2
] .

Again, by applying Lemma 1 for the coefficients c2 and d2, we obtain

|a3| ≤
2ξ

(1 + 2t)Υ3
.

To determine the bound on |a4|, adding (30) and (33) with c1 = −d1, we have

− 5(1 + 3t)Υ4a3
2 + 5(1 + 3t)Υ4a2a3 = ξ(c3 + d3) + ξ(ξ − 1)c1(c2 − d2), (40)

substitute the values of a2 and a3 from (34) and (39) in (40) and simplify, we obtain

c1(c2 − d2) =
2(1 + 2t)(1 + t)Υ2Υ3

5ξ(1 + 3t)Υ4 + 2(1− ξ)(1 + 2t)(1 + t)Υ2Υ3
(c3 + d3). (41)

Subtracting (33) from (30) and using (36), (37), (40) and (41) in the result, we obtain
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2a4(1 + 3t)Υ4 = −5(1 + 3t)Υ4a3
2 + 5(1 + 3t)a2a3Υ4 + ξ(c3 − d3)

+ ξ(ξ − 1)c1(c2 + d2) +
ξ(ξ−1)(ξ−2)

3 c3
1

= ξ(c3 + d3) + ξ(ξ − 1)c1(c2 − d2)

+ ξ(c3 − d3) + ξ(ξ − 1)c1(c2 + d2) +
ξ(ξ−1)(ξ−2)

3 c3
1

= 2ξc3 +
2ξ(ξ−1)(1+2t)(1+t)Υ2Υ3

5ξ(1+3t)Υ4+2(1−ξ)(1+2t)(1+t)Υ2Υ3
(c3 + d3)

+ ξ(ξ − 1)c1(c2 + d2) +
ξ(ξ−1)(ξ−2)(1+t)2Υ2

2
3{2ξ(1+2t)Υ3+(1−ξ)(1+t)2Υ2

2}

= 10ξ2(1+3t)Υ4+2ξ(1−ξ)(1+2t)(1+t)Υ2Υ3
5ξ(1+3t)Υ4+2(1−ξ)(1+2t)(1+t)Υ2Υ3

c3

− 2ξ(1−ξ)(1+2t)(1+t)Υ2Υ3
5(1+3t)ξΥ4+2(1−ξ)(1+2t)(1+t)Υ2Υ3

d3

− ξ(1− ξ)

[
6ξ(1+2t)Υ3+(1−2ξ)(1+t)2Υ2

2
6ξ(1+2t)Υ3+3(1−ξ)(1+t)2Υ2

2

]
c1(c2 + d2).

(42)

Applying Lemma 1 with the triangle inequality in (42), we obtain

|a4| ≤
2ξ

(1 + 3t)Υ4

1 +
2(1− ξ)(1 + t)Υ2

{
6ξ(1 + 2t)Υ3 + (1− 2ξ)(1 + t)2Υ2

2
}

3
{

2ξ(1 + 2t)Υ3 + (1− ξ)(1 + t)2Υ2
2
} 3

2

.

This concludes the proof of Theorem 1.

Theorem 2. Let f (z) be given by (1) and f ∈ YMa,c,$
ϑ,m,`(ζ, t). Then

|a2| ≤

√
2(1− ζ)

(1 + 2t)Υ3
, (43)

|a3| ≤
2(1− ζ)

(1 + 2t)Υ3
(44)

and

|a4| ≤
2(1− ζ)

(1 + 3t)Υ4
. (45)

Proof. Since f (z) ∈ YMa,c,$
ϑ,m,`(ζ, t), there exist two functions φ(z) and ψ(z) ∈ P satisfying

the conditions of Lemma 1, such that

(1− t)
Ξa,c,$

ϑ,m,` f (z)

z
+ t
(

Ξa,c,$
ϑ,m,` f (z)

)′
= ζ + (1− ζ)φ(z) (46)

and

(1− t)
Ξa,c,$

ϑ,m,`g(w)

w
+ t
(

Ξa,c,$
ϑ,m,`g(w)

)′
= ζ + (1− ζ)ψ(w) (47)

where φ(z) and ψ(w) given by (26) and (27) respectively. Equating the coefficients
in (46) and (47) gives

(1 + t)Υ2a2 = (1− ζ)c1 (48)

(1 + 2t)Υ3a3 = (1− ζ)c2 (49)

(1 + 3t)Υ4a4 = (1− ζ)c3, (50)

and
− (1 + t)Υ2a2 = (1− ζ)d1 (51)

(1 + 2t)Υ3(2a2
2 − a3) = (1− ζ)d2 (52)

− (1 + 3t)Υ4(5a3
2 − 5a2a3 + a4) = (1− ζ)d3, (53)
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from (48) and (51) gives

a2 =
1− ζ

(1 + t)Υ2
c1 = − 1− ζ

(1 + t)Υ2
d1, (54)

which implies
c1 = −d1.

Adding (49) and (52), we obtain

2(1 + 2t)Υ3a2
2 = (1− ζ)(c2 + d2) (55)

a2
2 =

(1− ζ)

2(1 + 2t)Υ3
(c2 + d2), (56)

using (54) in (55), we have

c2
1 =

(1 + t)2Υ2
2

2(1 + 2t)(1− ζ)Υ3
(c2 + d2), (57)

an applications of the triangle inequality and Lemma 1 in (57) yield

|c1| ≤ (1 + t)Υ2

√
2

(1 + 2t)(1− ζ)Υ3
, (58)

using (58) in (54) gives

|a2| ≤

√
2(1− ζ)

(1 + 2t)Υ3
. (59)

Now, subtracting (52) from (49) and using (55), we obtain

|a3| ≤
2(1− ζ)

(1 + 2t)Υ3
, (60)

which is the direct consequence of (49).
In order to obtain the bounds on |a4|, we proceed as follows:
From (50), it is easy to see that

|a4| =
∣∣∣∣ (1− ζ)c3

(1 + 3t)Υ4

∣∣∣∣ ≤ 2(1− ζ)

(1 + 3t)Υ4
. (61)

On the otherhand, subtracting (53) from (50) and using (54), we obtain

a4 =
1

2(1 + 3t)Υ4

[
−5(1 + 3t)(1− ζ)3Υ4

(1 + t)3Υ3
2

c3
1 +

5(1 + 3t)(1− ζ)Υ4

(1 + t)Υ2
a3c1 + (1− ζ)(c3 − d3)

]
. (62)

Applying the triangle inequality in (62), we have

|a4| ≤
1

2(1 + 3t)Υ4

[
5(1 + 3t)(1− ζ)3Υ4

(1 + t)3Υ3
2

|c1|3 +
5(1 + 3t)(1− ζ)Υ4

(1 + t)Υ2
|a3||c1|+ (1− ζ)(|c3|+ |d3|)

]
. (63)

Using (58), (60) and Lemma 1 in (63), after simplification yield

|a4| ≤
2(1− ζ)

(1 + 3t)Υ4

[
1 +

5(1 + 3t)
(1 + 2t)Υ3

√
2(1− ζ)

(1 + 2t)Υ3

]
. (64)
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From (61) and (64), we observe that

|a4| ≤ min

[
2(1− ζ)

(1 + 3t)Υ4
,

2(1− ζ)

(1 + 3t)Υ4

{
1 +

5(1 + 3t)
(1 + 2t)Υ3

√
2(1− ζ)

(1 + 2t)Υ3

}]

=
2(1− ζ)

(1 + 3t)Υ4
.

This completes the proof of Theorem 2.

3. Fekete-Szegö Inequalities

In this section, we obtain Fekete-Szegö inequalities results [37] (see [40]),
for f ∈ YN a,c,$

ϑ,m,`(ξ, t), and f ∈ YMa,c,$
ϑ,m,`(ζ, t).

Theorem 3. For ν ∈ R, let f be given by (1) and f ∈ YN a,c,$
ϑ,m,`(ξ, t), then

∣∣∣a3 − νa2
2

∣∣∣ ≤ { 2ξ
(1+2t)Υ3

, 0 ≤ |h(ν)| ≤ ξ
2(1+2t)Υ3

;

4|h(ν)|, |h(ν)| ≥ ξ
2(1+2t)Υ3

,

where

h(ν) =
2ξ2(1− ν)

4ξ(1 + 2t)Υ3 − (ξ − 1)(1 + t)2Υ2
2

.

Proof. From (39), we have

a3 − νa2
2 =

ξ(c2 − d2)

2(1 + 2t)Υ3
+ (1− ν)a2

2 (65)

=
ξ(c2 − d2)

2(1 + 2t)Υ3
+

2ξ2(1− ν)(c2 + d2)

4ξ(1 + 2t)Υ3 − (ξ − 1)(1 + t)2Υ2
2

. (66)

By simple computation , we have

a3 − νa2
2 =

(
h(ν) +

ξ

2(1 + 2t)Υ3

)
c2 +

(
h(ν)− ξ

2(1 + 2t)Υ3

)
d2, (67)

where

h(ν) =
2ξ2(1− ν)

4ξ(1 + 2t)Υ3 − (ξ − 1)(1 + t)2Υ2
2

. (68)

Thus by taking modulus of (67), we obtain

∣∣∣a3 − νa2
2

∣∣∣ ≤ { 2ξ
(1+2t)Υ3

; 0 ≤ |h(ν)| ≤ ξ
2(1+2t)Υ3

4|h(ν)| ; |h(ν)| ≥ ξ
2(1+2t)Υ3

,

where h(ν) is given by (68).

Theorem 4. For ν ∈ R, let f be given by (1) and f ∈ YMa,c,$
ϑ,m,`(ζ, t), then

∣∣∣a3 − νa2
2

∣∣∣ ≤ (1− ζ)|2− ν|
(1 + 2t)Υ3

[
1 +

ν

|2− ν|

]
.

Proof. Subtracting (52) from (49), we have

a3 =
(1− ζ)(c2 − d2)

2(1 + 2t)Υ3
+ a2

2, (69)
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and using (56), we obtain

a3 − νa2
2 =

(1− ζ)(c2 − d2)

2(1 + 2t)Υ3
+ (1− ν)a2

2 (70)

=
(1− ζ)(c2 − d2)

2(1 + 2t)Υ3
+

(1− ζ)(1− ν)

2(1 + 2t)Υ3
(c2 + d2). (71)

By simple computation, we have

a3 − νa2
2 =

(
(1−ζ)(1−ν)
2(1+2t)Υ3

+ 1−ζ
2(1+2t)Υ3

)
c2 +

(
(1−ζ)(1−ν)
2(1+2t)Υ3

− 1−ζ
2(1+2t)Υ3

)
d2,

= (1−ζ)
2(1+2t)Υ3

((1− ν) + 1)c2 +
(1−ζ)

2(1+2t)Υ3
((1− ν)− 1)d2,

= (1−ζ)
2(1+2t)Υ3

[(2− ν)c2 − νd2],

= (1−ζ)(2−ν)
2(1+2t)Υ3

[
c2 − ν

2−ν d2
]
.

(72)

Thus, by taking the modulus of (72), we obtain∣∣∣a3 − νa2
2

∣∣∣ ≤ (1− ζ)|2− ν|
(1 + 2t)Υ3

[
1 +

ν

|2− ν|

]
.

In particular ν = 1, we obtain∣∣∣a3 − a2
2

∣∣∣ ≤ 2(1− ζ)

(1 + 2t)Υ3
.

4. Conclusions

We defined a unified Yamaguchi–Noshiro type subclass of bi-univalent functions
based on Sălăgean-Erdély–Kober operator. We obtained nonsharp bounds for the initial
coefficients and the Fekete–Szegö inequalities for the functions in this new class. Some
interesting corollaries and applications of the results were also discussed. By suitably
fixing the parameters, as illustrated in Remarks 1 and 1, one can easily state the results
discussed in this article for the function classes given in Definitions 3–8. One can construct
the Yamaguchi–Noshiro class on the basis of the Ma–Minda [41] subordination [42] for
a given f ∈ Σ to be given by (1), satisfying the following conditions:(

(1− t)
Ξa,c,$

ϑ,m,` f (z)

z
+ t
(

Ξa,c,$
ϑ,m,` f (z)

)′)
≺ ϕ(z) (73)

and (
(1− t)

Ξa,c,$
ϑ,m,`g(w)

w
+ t
(

Ξa,c,$
ϑ,m,`g(w)

)′)
≺ ϕ(w), (74)

where
ϕ(z) = 1 + B1z + B2z2 + B3z3 + · · · , (B1 > 0)

0 < ζ ≤ 1, t ≥ 1, and z,∈ ∆; w ∈ ∆ρ and g are the inverse of f given by (10).
By giving some specific values to ϕ, as listed below, we define several new subclasses

of Σ :

1. For ϕ(z) = 1 + sin z, we have the function class S∗(ϕ) of starlike functions associated
with the sine functions (see [43]).

2. For ϕ(z) = 1 + z− 1
3 z3, we have the function class of starlike functions associated

with the nephroid (see [44]).
3. For ϕ(z) =

√
1 + z, we have the function class of starlike functions associated with

the lemniscate of Bernoulli (see [45]).
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4. For ϕ(z) = ez, we have the function class of starlike functions associated with the
exponintial functions (see [46]).

5. For ϕ(z) = z +
√

1 + z2, we have the function class of starlike functions associated
with the crescent shaped region (see [47]).
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