Three-Point Boundary Value Problems of Coupled Nonlocal Laplacian Equations
Abstract
:1. Introduction
2. Fractional Calculus and Green Function
2.1. Time Fractional Calculus
- , for and for , , .
- for , , .
- and for , , .
- for .
- for .
2.2. Fractional Laplacian
2.3. Function Spaces and Norms
2.4. Eigenvalue Problem
2.5. Green Function
- for and
- for and
- for and
- (H1)
- if, then
- if , then
3. Main Results
- (H2)
- and are Carathéodory functions and for arbitrary , there exist nonnegative real functions such that
- (H3)
- .
- (i)
- If , then
- (ii)
- If , then
- (iii)
- If , then
- (H4)
- andare Carathéodory functions. For any, there exist nonnegative constants, , andsuch that
- (H5)
- .
4. Illustrative Example
5. Conclusions and Perspectives
- (1)
- The order could be further learned.
- (2)
- Caputo fractional derivative could be replaced by other fractional derivatives.
- (3)
- Variable order fractional derivatives should be taken into consideration.
- (4)
- Other types of boundary value conditions could be investigated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byszewski, L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 1991, 162, 494–505. [Google Scholar] [CrossRef] [Green Version]
- Byszewski, L. Application of properties of the right-hand sides of evolution equations to an investigation of nonlocal evolution problems. Nonlinear Anal. 1998, 33, 413–426. [Google Scholar] [CrossRef]
- Byszewski, L.; Akca, H. Existence of solutions of a semilinear functional-differential evolution nonlocal problem. Nonlinear Anal. 1998, 34, 65–72. [Google Scholar] [CrossRef]
- Yuldashev, T.K. On the solvability of a boundary value problem for the ordinary fredholm integrodifferential equation with a degenerate kernel. Comput. Math. Math. Phys. 2019, 59, 241–252. [Google Scholar] [CrossRef]
- Turmetov, B.K.; Kadirkulov, B.J. On the solvability of an initial-boundary value problem for a fractional heat equation with involution. Lobachevskii J. Math. 2022, 43, 249–262. [Google Scholar] [CrossRef]
- Loreti, P.; Sforza, D. Weak solutions for time-fractional evolution equations in Hilbert spaces. Fractal Fract. 2021, 5, 138. [Google Scholar] [CrossRef]
- Bazhlekova, E. Existence and uniqueness results for a fractional evolution equation in Hilbert space. Fract. Calc. Appl. Anal. 2012, 15, 232–243. [Google Scholar] [CrossRef]
- Turmetov, B.K.; Ahmedov, A.A.; Orazov, I. On the solvability of a mixed problem for partial differential equations of parabolic type with involution. J. Phys. Conf. Ser. 2021, 1988, 012084. [Google Scholar] [CrossRef]
- Li, Q.; Liu, L.S.; Wei, M. Existence of positive S-asymptotically periodic solutions of the fractional evolution equations in ordered Banach spaces. Nonlinear Anal. Model. Control. 2021, 26, 928–946. [Google Scholar] [CrossRef]
- Ashurov, R.R.; Muhiddinova, O.T. Initial-boundary value problem for a time-fractional subdiffusion equation with an arbitrary elliptic differential operator. Lobachevskii J. Math. 2021, 42, 517–525. [Google Scholar] [CrossRef]
- Kamenskii, M.; Petrosyan, G.; de Fitte, P.R.; Yao, J.C. On a periodic boundary value problem for fractional quasilinear differential equations with a self-adjoint positive operator in Hilbert spaces. Mathematics 2022, 10, 219. [Google Scholar] [CrossRef]
- Liu, H.; Lin, L.; Sun, C.F. Well-posedness of the generalized Navier–Stokes equations with damping. Appl. Math. Lett. 2021, 121, 107471. [Google Scholar] [CrossRef]
- Salort, A.M. Eigenvalues and minimizers for a non-standard growth non-local operator. J. Differ. Equ. 2020, 268, 5413–5439. [Google Scholar] [CrossRef] [Green Version]
- Nezza, E.D.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Des. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 2013, 33, 2105–2137. [Google Scholar] [CrossRef]
- Youssfi, A.; Mahmoud, G.O.M. Nonlocal semilinear elliptic problems with singular nonlinearity. Calc. Var. Partial. Differ. Equ. 2021, 60, 153. [Google Scholar] [CrossRef]
- Fujita, H. On the blowing up of solutions of the Cauchy problem for ut = Δu + u1+α. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1966, 13, 109–124. [Google Scholar]
- Gladkov, A.; Kim, K.I. Blow-up of solutions for semilinear heat equation with nonlinear nonlocal boundary condition. J. Math. Anal. Appl. 2008, 338, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Gladkov, A.; Guedda, M. Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition. Nonlinear Anal. 2011, 74, 4573–4580. [Google Scholar] [CrossRef]
- Wu, Y.T. Blow-up for a semilinear heat equation with Fujita’s critical exponent on locally finite graphs. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 1–16. [Google Scholar] [CrossRef]
- Starovoitov, V.N. Boundary value problem for a global-in-time parabolic equation. Math. Methods Appl. Sci. 2020, 44, 1118–1126. [Google Scholar] [CrossRef]
- Ghanmi, A.; Horrigue, S. Evolution equations with fractional Gross Laplacian and Caputo time fractional derivative. Proc. Math. Sci. 2019, 129, 1–13. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Sun, H.R. The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 2015, 46, 69–92. [Google Scholar] [CrossRef]
- Tuan, N.H.; Au, V.V.; Nguyen, A.T. Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces. Arch. Math. 2022, 118, 305–314. [Google Scholar] [CrossRef]
- Kirane, M.; Laskri, Y.; Tatar, N.E. Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J. Math. Anal. Appl. 2005, 312, 488–501. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Li, C.P.; Li, H.F. The finite difference method for Caputo-type parabolic equation with fractional Laplacian: One-dimension case. Chaos Solitons Fractals 2017, 102, 319–326. [Google Scholar] [CrossRef]
- Gu, X.M.; Sun, H.W.; Zhang, Y.Z.; Zhao, Y.L. Fast implicit difference schemes for time–space fractional diffusion equations with the integral fractional Laplacian. Math. Methods Mpplied Sci. 2021, 44, 441–463. [Google Scholar] [CrossRef]
- Li, C.P.; Li, Z.Q. The blow-up and global existence of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian. J. Nonlinear Sci. 2021, 31, 1–35. [Google Scholar] [CrossRef]
- Kalmenov, T.S.; Suragan, D. On spectral zeta functions for a nonlocal boundary value problem of the Laplacian. AIP Conf. Proc. 2014, 1611, 19–24. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Boston, MA, USA, 2006. [Google Scholar]
- Zhang, T.W.; Li, Y.K. S-asymptotically periodic fractional functional differential equations with off-diagonal matrix Mittag–Leffler function kernels. Math. Comput. Simul. 2022, 193, 331–347. [Google Scholar] [CrossRef]
- Ge, W.G. Boundary Value Problems for Nonlinear Ordinary Differential Equations; Science Press: Beijing, China, 2007. [Google Scholar]
- Guo, D.J. Nonlinear Functional Analysis; Shandong Science and Technology Press: Jinan, China, 2001. [Google Scholar]
- Chen, C.; Dong, Q.X. Existence and Hyers-Ulam stability for a multi-term fractional differential equation with infinite delay. Mathematics 2022, 10, 1013. [Google Scholar] [CrossRef]
- Özdemir, İ. On the solvability of a class of nonlinear integral equations in Hölder spaces. Numer. Funct. Anal. Optim. 2022, 43, 365–393. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, H.; Zhou, J.; Zhang, T. Three-Point Boundary Value Problems of Coupled Nonlocal Laplacian Equations. Mathematics 2022, 10, 2204. https://doi.org/10.3390/math10132204
Qu H, Zhou J, Zhang T. Three-Point Boundary Value Problems of Coupled Nonlocal Laplacian Equations. Mathematics. 2022; 10(13):2204. https://doi.org/10.3390/math10132204
Chicago/Turabian StyleQu, Huizhen, Jianwen Zhou, and Tianwei Zhang. 2022. "Three-Point Boundary Value Problems of Coupled Nonlocal Laplacian Equations" Mathematics 10, no. 13: 2204. https://doi.org/10.3390/math10132204
APA StyleQu, H., Zhou, J., & Zhang, T. (2022). Three-Point Boundary Value Problems of Coupled Nonlocal Laplacian Equations. Mathematics, 10(13), 2204. https://doi.org/10.3390/math10132204