End-to-End Training of Deep Neural Networks in the Fourier Domain
Abstract
:1. Introduction
2. Acceleration of Networks in the Fourier Domain
3. Methods
3.1. Convolution Theorem
3.2. Methods in the Frequency Domain
3.2.1. Convolution Operation
3.2.2. Nonlinear Activation Function
3.3. Our Implementation
3.3.1. Subsampling Operation
3.3.2. Classifier
4. Results and Discussions
4.1. One-Dimensional Datasets
4.2. Two-Dimensional Datasets
4.3. Dependence on Hyperparameters
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. Cvt: Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 22–31. [Google Scholar]
- Raghu, M.; Unterthiner, T.; Kornblith, S.; Zhang, C.; Dosovitskiy, A. Do vision transformers see like convolutional neural networks? Adv. Neural Inf. Process. Syst. 2021, 34, 12116–12128. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Yim, J.; Joo, D.; Bae, J.; Kim, J. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4133–4141. [Google Scholar]
- Farhadi, A.; Rastegari, M. System and Methods for Efficiently Implementing a Convolutional Neural Network Incorporating Binarized Filter and Convolution Operation for Performing Image Classification. U.S. Patent App. 16/430,123, 4 June 2019. [Google Scholar]
- Liu, Y.; Ng, M.K. Deep neural network compression by Tucker decomposition with nonlinear response. Knowl.-Based Syst. 2022, 241, 108171. [Google Scholar] [CrossRef]
- Kim, Y.D.; Choi, S. Nonnegative tucker decomposition. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Hsia, S.C.; Wang, S.H.; Chang, C.Y. Convolution neural network with low operation FLOPS and high accuracy for image recognition. J. Real-Time Image Process. 2021, 18, 1309–1319. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, M.; Han, K.; Chen, H.; Zhang, W.; Xu, C.; Tao, D. AdderNet and its minimalist hardware design for energy-efficient artificial intelligence. arXiv 2021, arXiv:2101.10015. [Google Scholar]
- Mathieu, M.; Henaff, M.; LeCun, Y. Fast training of convolutional networks through ffts. arXiv 2013, arXiv:1312.5851. [Google Scholar]
- Vasilache, N.; Johnson, J.; Mathieu, M.; Chintala, S.; Piantino, S.; LeCun, Y. Fast convolutional nets with fbfft: A GPU performance evaluation. arXiv 2014, arXiv:1412.7580. [Google Scholar]
- Lin, J.; Ma, L.; Yao, Y. A Fourier Domain Training Framework for Convolutional Neural Networks Based on the Fourier Domain Pyramid Pooling Method and Fourier Domain Exponential Linear Unit. IEEE Access 2019, 7, 116612–116631. [Google Scholar] [CrossRef]
- Ayat, S.O.; Khalil-Hani, M.; Ab Rahman, A.A.H.; Abdellatef, H. Spectral-based convolutional neural network without multiple spatial-frequency domain switchings. Neurocomputing 2019, 364, 152–167. [Google Scholar] [CrossRef]
- Watanabe, T.; Wolf, D.F. Image classification in frequency domain with 2SReLU: A second harmonics superposition activation function. arXiv 2020, arXiv:2006.10853. [Google Scholar] [CrossRef]
- Kushchenko, A.S.; Ternovoy, N.E.; Popov, M.G.; Yakunin, A.N. Implementation of Convolution Function Through Fast Fourier Transform in Convolution Neural Networks Computation. In Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), Saint Petersburg, Russia, 25–28 January 2022; pp. 368–370. [Google Scholar]
- Xu, Y.; Nakayama, H. DCT-based Fast Spectral Convolution for Deep Convolutional Neural Networks. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Sun, B.; Xu, W.; Yang, Q. Analog Circuit Fault Diagnosis Based on FFT-CNN-LSTM. In Proceedings of the 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), Guiyang, China, 23–25 July 2021; pp. 305–310. [Google Scholar]
- Highlander, T.; Rodriguez, A. Very efficient training of convolutional neural networks using fast fourier transform and overlap-and-add. arXiv 2016, arXiv:1601.06815. [Google Scholar]
- Rippel, O.; Snoek, J.; Adams, R.P. Spectral representations for convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2449–2457. [Google Scholar]
- Pratt, H.; Williams, B.; Coenen, F.; Zheng, Y. Fcnn: Fourier convolutional neural networks. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Bilbao, Spain, 13–17 September 2017; pp. 786–798. [Google Scholar]
- Agostinelli, F.; Hoffman, M.; Sadowski, P.; Baldi, P. Learning activation functions to improve deep neural networks. arXiv 2014, arXiv:1412.6830. [Google Scholar]
- Reyes-Ortiz, J.L.; Oneto, L.; Samà, A.; Parra, X.; Anguita, D. Transition-aware human activity recognition using smartphones. Neurocomputing 2016, 171, 754–767. [Google Scholar] [CrossRef] [Green Version]
- Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml/index.php (accessed on 13 June 2022).
- LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database; ATT Labs: Atlanta, GA, USA, 2010; Volume 2. Available online: http://yann.lecun.com/exdb/mnist (accessed on 13 June 2022).
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv 2017, arXiv:1708.07747. Available online: http://xxx.lanl.gov/abs/1708.07747 (accessed on 13 June 2022).
Inverse FFT | Sum of Squares | Time Domain | ||||
---|---|---|---|---|---|---|
Dataset | Mean | Max | Mean | Max | Mean | Max |
MNIST | 90.20% | 92.39% | 91.93% | 94.99% | 97.17% | 98.75% |
Fashion-MNIST | 80.31% | 81.95% | 75.34% | 82.83% | 94.55% | 95.54% |
HADB | 92.33% | 94.08% | 90.54% | 93.95% | 94.6% | 95.95% |
OZONE | 90.26% | 96.4% | 96.07% | 96.4% | 94.31% | 97% |
Sum of Squares | Time Domain | |
---|---|---|
size of input | ||
size of kernel | ||
number of multiplications |
Fourier Domain (Sum of Squares) | Time Domain | |||
---|---|---|---|---|
Hyperparameters | Mean | Max | Mean | Max |
L: 16, 32; opt: Adam | 92.06% | 95.02% | 93.56% | 96.63% |
L: 16 and 32; opt: SGD | 90.28% | 93.12% | 91.42% | 94.5% |
L: 16, 32 and 64; opt: Adam | 91.93% | 94.99% | 97.17% | 98.75% |
L: 16, 32 and 64; opt: SGD | 91.4% | 94.26% | 89.3% | 93.21% |
L: 32, 32 and 64; opt: Adam | 91.77% | 94.9% | 97.12% | 98.85% |
L: 32, 32 and 64; opt: SGD | 89.61% | 93.06% | 89.3% | 93.57% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fülöp, A.; Horváth, A. End-to-End Training of Deep Neural Networks in the Fourier Domain. Mathematics 2022, 10, 2132. https://doi.org/10.3390/math10122132
Fülöp A, Horváth A. End-to-End Training of Deep Neural Networks in the Fourier Domain. Mathematics. 2022; 10(12):2132. https://doi.org/10.3390/math10122132
Chicago/Turabian StyleFülöp, András, and András Horváth. 2022. "End-to-End Training of Deep Neural Networks in the Fourier Domain" Mathematics 10, no. 12: 2132. https://doi.org/10.3390/math10122132
APA StyleFülöp, A., & Horváth, A. (2022). End-to-End Training of Deep Neural Networks in the Fourier Domain. Mathematics, 10(12), 2132. https://doi.org/10.3390/math10122132