Dynamical Analysis of Fractional Integro-Differential Equations
Abstract
:1. Introduction
2. Preliminaries Concept
3. Approximation of Chebyshev Series Expansion by Means of Caputo Derivative
4. Chebyshev Collocation Method
5. Applications
5.1. Problem 1
5.2. Problem 2
5.3. Problem 3
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loverro, A. Fractional Calculus: History, Definitions and Applications for the Engineer; Rapport Technique; Univeristy of Notre Dame, Department of Aerospace and Mechanical Engineering: Notre Dame, IN, USA, 2004; pp. 1–28. [Google Scholar]
- Rossikhin, Y.A.; Shitikova, M.V. Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids. Appl. Mech. Rev. 1997, 50, 15–67. [Google Scholar] [CrossRef]
- He, J.H. Nonlinear oscillation with fractional derivative and its applications. In Proceedings of the International Conference on Vibrating Engineering, Dalian, China, 6–9 August 1998; Volume 98, pp. 288–291. [Google Scholar]
- Baskin, E.; Iomin, A. Electro-chemical manifestation of nanoplasmonics in fractal media. Cent. Eur. J. Phys. 2013, 11, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Baillie, R.T. Long memory processes and fractional integration in econometrics. J. Econom. 1996, 73, 5–59. [Google Scholar] [CrossRef]
- Deng, W.H.; Li, C.P. Chaos synchronization of the fractional Lü system. Phys. A Stat. Mech. Its Appl. 2005, 353, 61–72. [Google Scholar] [CrossRef]
- Khan, H.; Farooq, U.; Shah, R.; Baleanu, D.; Kumam, P.; Arif, M. Analytical Solutions of (2+Time Fractional Order) Dimensional Physical Models, Using Modified Decomposition Method. Appl. Sci. 2019, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Bagley, R.L.; Torvik, P.J. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 1985, 23, 918–925. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional calculus: Some basic problems in continuum and statistical mechanics. arXiv 2012, arXiv:1201.0863. [Google Scholar]
- Nonlaopon, K.; Naeem, M.; Zidan, A.; Shah, R.; Alsanad, A.; Gumaei, A. Numerical Investigation of the Time-Fractional Whitham–Broer–Kaup Equation Involving without Singular Kernel Operators. Complexity 2021, 2021, 1–21. [Google Scholar] [CrossRef]
- Areshi, M.; Khan, A.; Shah, R.; Nonlaopon, K. Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform. AIMS Math. 2022, 7, 6936–6958. [Google Scholar] [CrossRef]
- Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Shah, R.; Chung, J.D. Analytical Investigation of Fractional-Order Korteweg-De-Vries-Type Equations under Atangana-Baleanu-Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Bushnaq, S.; Momani, S.; Zhou, Y. A reproducing kernel Hilbert space method for solving integro-differential equations of fractional order. J. Optim. Theory Appl. 2013, 156, 96–105. [Google Scholar] [CrossRef]
- Akgül, A. Solutions of Integral Equations by Reproducing Kernel Hilbert Space Method. In Topics in Integral and Integro-Differential Equations; Springer: Cham, Switzerland, 2021; pp. 103–124. [Google Scholar]
- Amin, R.; Shah, K.; Asif, M.; Khan, I.; Ullah, F. An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. J. Comput. Appl. Math. 2021, 381, 113028. [Google Scholar] [CrossRef]
- Huang, L.; Li, X.F.; Zhao, Y.; Duan, X.Y. Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 2011, 62, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Abbasbandy, S.; Hashemi, M.S.; Hashim, I. On convergence of homotopy analysis method and its application to fractional integro-differential equations. Quaest. Math. 2013, 36, 93–105. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L. Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 2017, 2017, 27. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Wang, Z.; Xu, D. An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 2020, 151, 199–212. [Google Scholar] [CrossRef]
- Khaleel, O.I. Variational iteration method for solving multi-fractional integro differential equations. Iraqi J. Sci. 2014, 55, 1086–1094. [Google Scholar]
- Ullah, Z.; Ahmad, S.; Ullah, A.; Akgül, A. On solution of fuzzy Volterra integro-differential equations. Arab. J. Basic Appl. Sci. 2021, 28, 330–339. [Google Scholar] [CrossRef]
- Ghazanfari, B.; Ghazanfari, A.G.; Veisi, F. Homotopy perturbation method for nonlinear fractional integro-differential equations. Aust. J. Basic Applid Sci. 2010, 12, 5823–5829. [Google Scholar]
- Akgül, A. A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 2018, 114, 478–482. [Google Scholar] [CrossRef]
- Ul Haq, M.; Ullah, A.; Ahmad, S.; Akgül, A. A Quantitative Approach to nth-Order Nonlinear Fuzzy Integro-Differential Equation. Int. J. Appl. Comput. Math. 2022, 8, 1–24. [Google Scholar] [CrossRef]
- Ghanbari, B.; Akgül, A. Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Scr. 2020, 95, 075201. [Google Scholar] [CrossRef]
- Modanli, M.; Akgül, A. Numerical solution of fractional telegraph differential equations by theta-method. Eur. Phys. J. Spec. Top. 2017, 226, 3693–3703. [Google Scholar] [CrossRef]
- Alaoui, M.; Fayyaz, R.; Khan, A.; Shah, R.; Abdo, M. Analytical Investigation of Noyes–Field Model for Time-Fractional Belousov–Zhabotinsky Reaction. Complexity 2021, 2021, 1–21. [Google Scholar] [CrossRef]
- Nemati, S.; Sedaghat, S.; Mohammadi, I. A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 2016, 308, 231–242. [Google Scholar] [CrossRef]
- Mahdy, A.M.; Mohamed, E.M. Numerical studies for solving system of linear fractional integro-differential equations by using least squares method and shifted Chebyshev polynomials. J. Abstr. Comput. Math. 2016, 1, 24–32. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Sunthrayuth, P.; Ullah, R.; Khan, A.; Shah, R.; Kafle, J.; Mahariq, I.; Jarad, F. Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations. J. Funct. Spaces 2021, 2021, 1537958. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: San Diego, CA, USA, 2006. [Google Scholar]
- Kadem, A.; Baleanu, D. Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 491–501. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Hafez, R.M. Chebyshev collocation treatment of Volterra-Fredholm integral equation with error analysis. Arab. J. Math. 2020, 9, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Khader, M.M. On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 2535–2542. [Google Scholar] [CrossRef]
- Constantinides, A. Applied Numerical Methods with Personal Computers; McGraw-Hill, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Aziz, I.; Fayyaz, M. A new approach for numerical solution of integro-differential equations via Haar wavelets. Int. J. Comput. Math. 2013, 90, 1971–1989. [Google Scholar]
- Bushnaq, S.; Maayah, B.; Ahmad, M. Reproducing kernel Hilbert space method for solving fredholm integrodifferential equations of fractional order. Ital. J. Pure Appl. Math. 2016, 36, 307–318. [Google Scholar]
- Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations. Eng. Comput. 2021, 37, 1791–1806. [Google Scholar] [CrossRef]
Exact | CPM | CPM Error | |
---|---|---|---|
0 | 0.0000000000000 | 0.0000000000000 | 3.0000000 × |
0.10 | 0.0998334166500 | 0.0998334166900 | 4.0000000 × |
0.20 | 0.1986693308000 | 0.1986693309000 | 1.0000000 × |
0.30 | 0.2955202067000 | 0.2955202066000 | 1.0000000 × |
0.40 | 0.3894183423000 | 0.3894183423000 | 3.0000000 × |
0.50 | 0.4794255386000 | 0.4794255386000 | 2.0000000 × |
0.60 | 0.5646424734000 | 0.5646424733000 | 1.0000000 × |
0.70 | 0.6442176872000 | 0.6442176872000 | 1.0000000 × |
0.80 | 0.7173560909000 | 0.7173560911000 | 2.0000000 × |
0.90 | 0.7833269096000 | 0.7833269097000 | 1.0000000 × |
1.0 | 0.8414709848000 | 0.8414709849000 | 1.0000000 × |
CPM A.E | HWM A.E | HLBF A.E | |
---|---|---|---|
0 | 3.0000000 × | 0.0000 × | 7.7000 × |
0.10 | 4.0000000 × | 3.7171 × | 3.2417 × |
0.20 | 1.0000000 × | 1.3100 × | 7.0699 × |
0.30 | 1.0000000 × | 1.6507 × | 1.4379 × |
0.40 | 3.0000000 × | 2.8408 × | 5.9766 × |
0.50 | 2.0000000 × | 3.8089 × | 1.1115 × |
0.60 | 1.0000000 × | 6.0150 × | 2.0875 × |
0.70 | 1.0000000 × | 1.1697 × | 3.2213 × |
0.80 | 2.0000000 × | 6.0064 × | 4.6119 × |
0.90 | 1.0000000 × | 3.0721 × | 6.8891 × |
1.0 | 1.0000000 × | 1.04407 × | 7.5720 × |
Error () | Error () | Error () | Error () | |
---|---|---|---|---|
0 | 3.2000000 × | 3.2000000 × | 3.1000000 × | 3.000000 × |
0.1 | 1.135152 × | 8.919750 × | 4.3009500 × | 4.000000 × |
0.2 | 1.8666930 × | 1.4671060 × | 7.0767400 × | 1.000000 × |
0.3 | 6.6282070 × | 5.2095370 × | 2.5128190 × | 1.000000 × |
0.4 | 1.1508209 × | 9.0395280 × | 4.3540760 × | 3.000000 × |
0.5 | 1.1921572 × | 9.3353540 × | 4.4664560 × | 2.000000 × |
0.6 | 6.3285470 × | 4.8636960 × | 2.2323920 × | 1.000000 × |
0.7 | 3.8548800 × | 3.2733470 × | 1.8270010 × | 1.000000 × |
0.8 | 1.7628395 × | 1.4284069 × | 7.3245480 × | 2.000000 × |
0.9 | 3.4219219 × | 2.7559102 × | 1.3964212 × | 1.000000 × |
1 | 5.5153604 × | 4.4269605 × | 2.2284125 × | 1.000000 × |
Exact | CPM | CPM Error | |
---|---|---|---|
0 | 0.0000000000000 | 0.0000000000000 | 1.302230 × |
0.10 | 0.0998334166500 | 0.0998334168200 | 1.700000 × |
0.20 | 0.1986693308000 | 0.1986693309000 | 1.000000 × |
0.30 | 0.2955202067000 | 0.2955202077000 | 1.000000 × |
0.40 | 0.3894183423000 | 0.3894183482000 | 5.900000 × |
0.50 | 0.4794255386000 | 0.4794255649000 | 2.630000 × |
0.60 | 0.5646424734000 | 0.5646425587000 | 8.530000 × |
0.70 | 0.6442176872000 | 0.6442179088000 | 2.216000 × |
0.80 | 0.7173560909000 | 0.7173565688000 | 4.779000 × |
0.90 | 0.7833269096000 | 0.7833277785000 | 8.689000 × |
1.0 | 0.8414709848000 | 0.8414722860000 | 1.301200 × |
CPM A.E | RKHSM A.E | |
---|---|---|
0.10 | 1.7000000000 × | 1.563021804 × |
0.20 | 1.0000000000 × | 5.715570458 × |
0.30 | 1.0000000000 × | 1.155520034 × |
0.40 | 5.9000000000 × | 1.845986977 × |
0.50 | 2.6300000000 × | 2.602839165 × |
0.60 | 8.5300000000 × | 3.402047744 × |
0.70 | 2.2160000000 × | 4.230597172 × |
0.80 | 4.7790000000 × | 5.082385022 × |
0.90 | 8.6890000000 × | 5.95512471 × |
1.0 | 1.3012000000 × | 6.848236863 × |
Error () | Error () | Error () | Error () | |
---|---|---|---|---|
0.1 | 3.4570000 × | 3.3670000 × | 3.2580000 × | 1.7000000 × |
0.2 | 4.4276000 × | 4.3141000 × | 4.2028000 × | 1.0000000 × |
0.3 | 7.5649000 × | 7.3708900 × | 7.1809700 × | 1.0000000 × |
0.4 | 5.6672680 × | 5.5219250 × | 5.3796520 × | 5.9000000 × |
0.5 | 2.7023651 × | 2.6330610 × | 2.5652204 × | 2.6300000 × |
0.6 | 9.6830708 × | 9.4347414 × | 9.1916573 × | 8.5300000 × |
0.7 | 2.8486630 × | 2.7756070 × | 2.7040942 × | 2.2160000 × |
0.8 | 7.2541279 × | 7.0680909 × | 6.8859836 × | 4.7790000 × |
0.9 | 1.6544492 × | 1.6120198 × | 1.5704866 × | 8.6890000 × |
1 | 3.4590475 × | 3.3703381 × | 3.2835026 × | 1.3012000 × |
Exact | CPM | CPM Error | |
---|---|---|---|
0 | 0.0000000000000 | 0.0000000000000 | 5.0806752 × |
0.10 | 0.1105170918000 | 0.1105170918000 | 3.0000000 × |
0.20 | 0.2442805516000 | 0.2442805516000 | 2.0000000 × |
0.30 | 0.4049576424000 | 0.4049576422000 | 2.0000000 × |
0.40 | 0.5967298792000 | 0.5967298789000 | 3.0000000 × |
0.50 | 0.8243606355000 | 0.8243606358000 | 3.0000000 × |
0.60 | 1.0932712800000 | 1.0932712810000 | 1.0000000 × |
0.70 | 1.4096268950000 | 1.4096268960000 | 1.0000000 × |
0.80 | 1.7804327420000 | 1.7804327440000 | 2.0000000 × |
0.90 | 2.2136428000000 | 2.2136428000000 | 1.0000000 × |
1.0 | 2.7182818280000 | 2.7182818300000 | 2.0000000 × |
Error () | Error () | Error () | Error () | |
---|---|---|---|---|
0 | 1.0485000 × | 2.8083000 × | 4.0223000 × | 5.080675 × |
0.1 | 2.0000000 × | 1.0000000 × | 3.0000000 × | 3.000000 × |
0.2 | 5.2000000 × | 3.3700000 × | 1.6300000 × | 2.000000 × |
0.3 | 1.3313000 × | 8.6660000 × | 4.2330000 × | 2.000000 × |
0.4 | 1.3296200 × | 8.6548000 × | 4.2294000 × | 3.000000 × |
0.5 | 7.9241500 × | 5.1574900 × | 2.5201000 × | 3.000000 × |
0.6 | 3.4067700 × | 2.2171800 × | 1.0831300 × | 1.000000 × |
0.7 | 1.1691110 × | 7.6081300 × | 3.7158300 × | 1.000000 × |
0.8 | 3.4019540 × | 2.2136880 × | 1.0809210 × | 2.000000 × |
0.9 | 8.7273840 × | 5.6785490 × | 2.7721080 × | 1.000000 × |
1 | 2.0271126 × | 1.3188502 × | 6.4366770 × | 2.000000 × |
CPM A.E | POMM A.E | |
---|---|---|
0.1 | 3.00000000 × | 3.567040 × |
0.2 | 2.00000000 × | 2.951000 × |
0.40 | 3.00000000 × | 3.304000 × |
0.60 | 1.00000000 × | 3.712000 × |
0.80 | 2.00000000 × | 4.368000 × |
0.90 | 1.00000000 × | 3.943000 × |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; Odinaev, I.; Shah, R.; Weera, W. Dynamical Analysis of Fractional Integro-Differential Equations. Mathematics 2022, 10, 2071. https://doi.org/10.3390/math10122071
Hassan TS, Odinaev I, Shah R, Weera W. Dynamical Analysis of Fractional Integro-Differential Equations. Mathematics. 2022; 10(12):2071. https://doi.org/10.3390/math10122071
Chicago/Turabian StyleHassan, Taher S., Ismoil Odinaev, Rasool Shah, and Wajaree Weera. 2022. "Dynamical Analysis of Fractional Integro-Differential Equations" Mathematics 10, no. 12: 2071. https://doi.org/10.3390/math10122071
APA StyleHassan, T. S., Odinaev, I., Shah, R., & Weera, W. (2022). Dynamical Analysis of Fractional Integro-Differential Equations. Mathematics, 10(12), 2071. https://doi.org/10.3390/math10122071