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Abstract: In this article, a new analytical technique based on an innovative transformation is used to
solve (2+time fractional-order) dimensional physical models. The proposed method is the hybrid
methodology of Shehu transformation along with Adomian decomposition method. The series form
solution is obtained by using the suggested method which provides the desired rate of convergence.
Some numerical examples are solved by using the proposed method. The solutions of the targeted
problems are represented by graphs which have confirmed closed contact between the exact and
obtained solutions of the problems. Based on the novelty and straightforward implementation of
the method, it is considered to be one of the best analytical techniques to solve linear and non-linear
fractional partial differential equations.

Keywords: Shehu transformation; Adomian decomposition; analytical solution; Caputo derivatives;
(2+time fractional-order) dimensional physical models

1. Introduction

Fractional calculus is considered to be a powerful tool for modeling complex phenomenon.
Recently, the researchers have shown the greatest interest towards fractional calculus because
of its numerous applications in different fields of sciences. Despite complicated background of
fractional calculus, it came into being from simple question of L’Hospital. The first order represent
slope of a function, what will it represent for fractional order ( 1

2 )? To find the answer of this
question, the mathematicians have managed to open a new window of opportunities to improve
the mathematical modeling of real world problems, which has given birth to many new questions and
intriguing results. These newly established results have numerous implementation in many areas of
engineering [1,2], such as fractional-order Buck master and diffusion problems [3], fractional-order
telegraph model [4,5], fractional KdV-Burger-Kuramoto equation [6], fractal vehicular traffic flow [7],
fractional Drinfeld-Sokolov-Wilson equation [8], fractional-order anomalous sub-diffusion model [9],
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fractional design of hepatitis B virus [10], fractional modeling chickenpox disease [11], fractional
blood ethanol concentration model [12], fractional model for tuberculosis [13], fractional vibration
equation [14], fractional Black-Scholes option pricing equations [15], fractionally damped beams [16],
fractionally damped coupled system [17], fractional-order heat, wave and diffusion equations [18,19],
fractional order pine wilt disease model [20], fractional diabetes model [21] etc.

Nowadays, the focus of the researchers is to develop different numerical and analytical techniques
for the solution of fractional-order models. Therefore, different types of analytical and numerical
methods have been developed and used for the solution of different fractional models. The analytical
algorithm, the history of integral transform traced back to the time when Laplace started work
an integral transform in 1780s and Joseph Fourier in 1822. Integral transformations are without
question one of the most useful and effective methods in theoretical and applied mathematics,
with numerous uses in quantum physics, mechanical engineering and several other areas of science.
Moreover, the integral transform is used in chemistry, architecture, and other social sciences to evaluate
various models [22]. In recent years, different integral transform such as Laplace transform [23–25]
, Fourier transform [26,27], Hankel transform [28], Mellin transform [29], Z-transform [30], Wavelet
transform [31], Elzaki transform [32,33], Mahgoub transform [34], Aboodh transform [35], Mohand
transform [36], Sumudu transform [37,38], Hermite transform [39] etc have been used for the solution
of different physical models.

Originality of the paper: In this article, we have applied a new analytical technique, which is
based on generalization of sumudu and laplace transform with Adomian decomposition method
(ADM) to solve (2+time fractional-order) dimensional physical models. In the present research
we have analyzed the fractional view of some important physical problems by using Shehu
decomposition method (SDM). Some important fractional-order problems are solved, which provide
the best information about the targeted physical problems as compare to integer-order problems
solution. The results of the integer-order problem are compared with the fractional-order problems.
In conclusion, in the present research work, we provided and improved the existing physical models
of integer-order by using the idea of fractional calculus. The modified mathematical models of
fractional-order derivative are solved by using a new and sophisticated analytical method. Moreover,
the proposed analytical method has provided the solutions of the problems that have a very close
contact with the exact solutions of the problems. The methodology can be extended towards other
fractional-order partial differential equations, that are frequently occurred in science and engineering.

The rest of the paper is organized as: In Section 2, we presented the basic definitions and
theorem of the proposed method. In Section 3, we have discussed the implementation of proposed
transformation. In Section 4 we evaluated the numerical examples by using the proposed technique
and discussed the plots. In Section 5 we lastly summarized our results.

2. Preliminaries Concepts

In this section, we present some fundamental and appropriate definitions and preliminary
concepts related to the fractional calculus and the Shehu transformation.

Definition 1. Shehu transform
Shehu transformation is new and similar to other integral transformation which is defined for functions of

exponential order [40]. We take a function in the set A define by

A = {u(τ) : ∃, ρ1, ρ2 > 0, |u(τ)| < Me
|τ|
ρi , i f τ ∈ [0, ∞), (1)

The Shehu transform which is represented by S(.) for a function u(τ) is defined as

S{u(τ)} = V(s, µ) =
∫ ∞

0
u(τ)e

−sτ
µ u(τ)dτ, τ > 0, s > 0. (2)
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The Shehu transform of a function u(τ) is V(s, µ): then u(τ) is called the inverse of V(s, µ) which is
expressed as

S−1 {V(s, µ)} = u(τ), f or τ ≥ 0, S−1is inverse Shehu trans f orm. (3)

Definition 2. Shehu transform for nth derivatives
The Shehu transformation for nth derivatives is defined as [40]

S
{

u(n)(τ)
}
=

sn

µn V(s, µ)−
n−1

∑
k=0

(
s
µ

)n−k−1
u(k)(0). (4)

Definition 3. Caputo operator of fractional partial derivative
The fractional Caputo operator is represented as [41]

Dβ
τ f (τ) =


∂n f (τ)

∂τn , β = n ∈ N,
1

Γ(n−β)

∫ τ
0 (τ − φ)n−β−1 f (n)(φ)∂φ, n− 1 < β ≤ n, n ∈ N.

(5)

Definition 4. Shehu transform for fractional order derivatives
The Shehu transformation for the fractional order derivatives is expressed as

S
{

u(β)(τ)
}
=

sβ

µβ
V(s, µ)−

n−1

∑
k=0

(
s
µ

)β−k−1
u(k)(0), 0 < β ≤ n, (6)

In Table 1 show different special functions of Shehu transformation.

Table 1. The Shehu transform of some special functions.

Functional Form Shehu Transform Form

1 u
s

t u2

s2

eτ u
s−au

sin(τ) u2

s2+u2

cos(τ) us
s2+u2

τn

n! for n = 0, 1, 2, · · · ( u
s )

n+1

τn

Γ(n+1) for n = 0, 1, 2, · · · ( u
s )

n+1

Theorem 1. If the function u(τ) is piecewise continues at every finite interval of 0 ≤ τ ≤ β and of exponential
order α for τ > β, then there’s the Shehu transform u(s, µ) [40].

Proof. For any natural number β, we deduct algebraically:

∫ ∞

0
exp(− sτ

µ
)u(τ)dτ =

∫ β

0
exp(− sτ

µ
)u(τ)dτ +

∫ ∞

β
exp(− sτ

µ
)u(τ)dτ, (7)

since the function u(τ) continues in a piecewise manner at every finite interval 0 ≤ τ ≤ β, there’s the
first integral on the right hand side. We suggest the following situation to validate this statement,
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|
∫ ∞

α
exp(− sτ

µ
)u(τ)dτ| ≤

∫ ∞

α
|exp(− sτ

µ
)u(τ)|dτ

≤
∫ ∞

α
exp(− sτ

µ
)|u(τ)|dτ

≤
∫ ∞

α
exp(− sτ

µ
)Nexp(βτ)dτ

= N
∫ ∞

α
exp(− (s− βu)τ

u
)dτ

= − Nu
(s− βu)

lim
γ−→∞

[
exp(− (s− βu)τ

u
)dτ

]γ

0

=
Nu

(s− βu)
.

(8)

The proof is complete.

3. Implementation of Shehu Transform

In this section, we have considered a time fractional (2+time fractional-order) dimensional
physical model in the form

uβ
τ(=,<, τ) = κu==(=,<, τ) + £u(=,<, τ) + ℵu(=,<, τ), β ∈ [1, 2] (9)

with initial condition
u(=,<, 0) = u(=,<), (10)

while κ is a non-linear operator and £ linear operator.
Applying the Shehu transform to both sides of the Equation (9) we obtain

S
{

uβ
τ(=,<, τ)

}
= S {κu==(=,<, τ) + £u(=,<, τ) + ℵu(=,<, τ)} , β ∈ [1, 2]. (11)

Using the differential property of Shehu transformation we have,

sβ

µβ

{
V(s, µ)− µ

s
u(0)− µ2

s2 u
′
(0)
}

= S {κu==(=,<, τ) + £u(=,<, τ) + ℵu(=,<, τ)} . (12)

Simplifying Equation (12), we obtain

V(s, µ) = +
µβ

sβ
S {κu==(=,<, τ) + £u(=,<, τ) + ℵu(=,<, τ)}+ µ

s
u(0) +

µ2

s2 u
′
(0). (13)

Applying the inverse Shehu transformation, we get

u(=,<, τ) = S−1
{

µβ

sβ
S {κu==(=,<, τ) + £u(=,<, τ) + ℵu(=,<, τ)}

}
+ u(0) + τu

′
(0). (14)

The nonlinear term ℵu(=,<, τ) is evaluated by using the procedure of Adomian polynomial
decomposition given by

ℵu(=,<, τ) =
∞

∑
m=0

Am(u0, u1, · · · ), m = 0, 1, · · · (15)

where,

Am(u0, u1, · · · ) = 1
m!

[
dm

dλm ℵ
(

∞

∑
i=0

λiui

)]
λ=0

, m > 0. (16)
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With the help of Equation (16), Equation (15) can be written as

u(=,<, τ) = S−1

{
µβ

sβ
S

{
κu==(=,<, τ) + £u(=,<, τ) +

∞

∑
m=0

Am

}}
+ u(0) + τu

′
(0). (17)

Finally, we obtain the recursive relation as

u0(=,<, τ) = u(0) + τu
′
(0), m = 0

um(=,<, τ) = S−1

{
µβ

sβ
S

{
κu(m−1)==(=,<, τ) + £u(m−1)(=,<, τ) + ℵu(m−1)(=,<, τ) +

∞

∑
m=0

Am

}}
, m ≥ 1.

(18)

4. Applications and Discussion

Example 1. Consider the (2+time fractional-order) dimensional hyperbolic wave model:

uβ
τ(=,<, τ) =

1
12
=2u==(=,<, τ) +

1
12
<2u<<(=,<, τ), β ∈ (1, 2) (19)

with initial conditions
u(=,<, 0) = =4, uτ(=,<, 0) = <4. (20)

If β = 2, then the exact solution of Equation (19) is

u(=,<, τ) = =4 sinh(t) +<4 cosh(t), (21)

Taking the Shehu transform of Equation (19) we obtain

sβ

µβ

{
V(s, µ)− µ

s
u(0)− µ2

s2 u
′
(0)
}

= S
{

1
12
=2u==(=,<, τ) +

1
12
<2u<<(=,<, τ)

}
. (22)

Simplifying Equation (22), we get

V(s, µ) =
µβ

sβ
S
{

1
12
=2u==(=,<, τ) +

1
12
<2u<<(=,<, τ)

}
+

µ

s
u(0) +

µ2

s2 u
′
(0). (23)

Applying inverse Shehu transform, we get

u(=,<, τ) = u(0) + u
′
(0)τ + S−1

{
µβ

sβ
S
{

1
12
=2u==(=,<, τ) +

1
12
<2u<<(=,<, τ)

}}
. (24)

Thus we get the following recursive scheme

u0(=,<, τ) = u(0) + u
′
(0)τ = =4 +<4τ, (25)

um+1(=,<, τ) = S−1
{

µβ

sβ
S
{

1
12
=2um==(=,<, τ) +

1
12
<2um<<(=,<, τ)

}}
. (26)

Using Equation (26), for m = 0, 1, 2, 3, · · · we get the following values
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u1(=,<, τ) = =4 τβ

β!
+<4 τβ+1

(β + 1)!
,

u2(=,<, τ) = =4 τ2β

(2β)!
+<4 τ2β+1

(2β + 1)!
,

u3(=,<, τ) = =4 τ3β

(3β)!
+<4 τ3β+1

(3β + 1)!
,

u4(=,<, τ) = =4 τ4β

(4β)!
+<4 τ4β+1

(4β + 1)!
,

(27)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for example 1

u(=,<, τ) = =4 +<4τ +=4 τβ

β!
+<4 τβ+1

(β + 1)!
+=4 τ2β

(2β)!
+<4 τ2β+1

(2β + 1)!
+=4 τ3β

(3β)!
+

<4 t3β+1

(3β + 1)!
+=4 τ4β

(4β)!
+<4 τ4β+1

(4β + 1)!
+ · · ·

(28)

After simplification, we get

u(=,<, τ) = =4
{

1 +
τβ

β!
+

τ2β

(2β)!
+

τ3β

(3β)!
+

τ4β

(4β)!
+ · · ·

}
+<4

{
τ +

τβ+1

(β + 1)!
+

τ2β+1

(2β + 1)!
+

τ3β+1

(3β + 1)!
+

τ4β+1

(4β + 1)!
+ · · ·

}
.

(29)

In particular, when β→ 2, the analytical solution of Shehu transform become as

u(=,<, τ) = =4
{

1 +
τ2

2!
+

τ4

(4)!
+

τ6

(6)!
+

τ8

(8)!
+ · · ·

}
+<4

{
τ +

τ3

(3)!
+

τ5

(5)!
+

τ7

(7)!
+

τ9

(9)!
+ · · ·

}
, (30)

which provide the close form solution as

u(=,<, τ) = =4 cosh(τ) +<4 sinh(τ). (31)

Figures 1 and 2 represent the exact and analytical solutions of Example 1. The solutions-graphs have
confirmed the closed contact between the exact solution and the analytical solution obtained by the proposed
method. In Figure 3, the solution of Example 1 are calculated at different fractional-order β of the derivative.
It is investigated that the solutions at different fractional-orders β are convergent to an integer-order solution
of Example 1. Figure 4 represent the solution verses time graph for Example 1. It is observed that as the time
fractional-order varies toward time integer-order, the time fractional-order solutions also approaches to the
solution of an integer-order problem of Example 1. All the above solution analysis of Example 1 indicate that
SDM is an efficient and effective method to solve fractional-order partial differential equations that are frequently
arising in science and engineering.



Appl. Sci. 2020, 10, 122 7 of 20

Figure 1. Represents the exact solution of Example 1 at β = 2.

Figure 2. Represents the analytical solution of Example 1 at β = 2.

Figure 3. Represents the solution at different fractional order of Example 1.
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Figure 4. Represents the solution at different fractional order of Example 1.

In Table 2, the solutions of Shehu transform decomposition method (SDM) and Adomian decomposition
method (ADM) are compared with each other. The comparison has shown that the solutions of proposed method
are in strong agreement with the solution of ADM.

Table 2. Comparison of SDM and ADM [42] of Example 1 at τ = 0.1.

SDM (m = 5) SDM (m = 3) SDM ( m= 5) ADM (m = 5) AE of SDM

= < β = 1.75 β = 2 β = 2 β = 2 β = 2

1 1 1.111568974 1.105195833 1.10519608 1.10519609 2.51 × 10−5

2 2 17.78510358 17.68313333 17.6831373 17.6831374 4.02 × 10−4

3 3 90.03708688 89.52086250 89.5208829 89.5208828 2.03 × 10−3

4 4 284.5616573 282.9301334 282.930198 282.930199 6.44 × 10−3

5 5 694.7306086 690.7473959 690.747553 690.747552 1.57 × 10−2

Example 2. Consider the (2+time fractional-order) dimensional Heat model:

uβ
τ(=,<, τ) = u==(=,<, τ) + u<<(=,<, τ), β ∈ (0, 1] (32)

with initial condition
u(=,<, 0) = sin(=) cos(<). (33)

If β = 1, then the exact solution of Equation (32) is

u(=,<, τ) = e−2τ sin(=) cos(<). (34)

Taking Shehu transform of Equation (32)

sβ

µβ

{
V(s, µ)− µ

s
u(0)

}
= S {u==(=,<, τ) + u<<(=,<, τ)} , (35)

Simplifying Equation (35), we get as

V(s, µ) =
µ

s
u(0) +

µβ

sβ
S {u==(=,<, τ) + u<<(=,<, τ)} . (36)

Applying inverse Shehu transform, we get
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u(=,<, τ) = u(0) + S−1
{

µβ

sβ
S {u==(=,<, τ) + u<<(=,<, τ)}

}
. (37)

Thus we get the following recursive scheme

u0(=,<, τ) = u(0) = sin(=) cos(<), (38)

um+1(=,<, τ) = S−1
{

µβ

sβ
S {um==(=,<, τ) + um<<(=,<, τ)}

}
, (39)

Using Equation (39), for m = 0, 1, 2, 3, · · · we get the following values

u1(=,<, τ) = −2 sin(=) cos(<) τβ

(β)!
,

u2(=,<, τ) = 4 sin(=) cos(<) τ2β

(2β)!
,

u3(=,<, τ) = −8 sin(=) cos(<) τ3β

(3β)!
,

u4(=,<, τ) = 16 sin(=) cos(<) τ4β

(4β)!
,

(40)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for example 2

u(=,<, τ) = sin(=) cos(<)− 2 sin(=) cos(<) τβ

(β)!
+ 4 sin(=) cos(<) τ2β

(2β)!
+

− 8 sin(=) cos(<) τ3β

(3β)!
+ 16 sin(=) cos(<) τ4β

(4β)!
+ · · ·

(41)

After simplification, we get

u(=,<, τ) = sin(=) cos(<)
{

1− 2
τβ

(β)!
+ 4

τ2β

(2β)!
+−8

τ3β

(3β)!
+ 16

τ4β

(4β)!
+ · · ·

}
, (42)

which converge to the solution

u(=,<, τ) = sin(=) cos(<)Eβ(−2τβ), (43)

For particular case β→ 1, the Shehu transform solution become as

u(=,<, τ) = sin(=) cos(<)e−2τ . (44)

Figures 5 and 6 show the exact and analytical solution of Example 2 respectively. The graphical
representation have confirmed the closed contact of the obtained solution with the exact solution of Example 2.
Similarly, Figures 7 and 8 represents the fractional-order solution of Example 2 for two and three space. Both
graphs support the convergence phenomena of fractional-order problems to an integer-order problem of Example 2.
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Figure 5. Represents the exact solution of Example 2 at β = 1.

Figure 6. Represents the analytical solution of Example 2 at β = 1.

Figure 7. u(=,<, τ) Represents the solution at different fractional order of Example 2.
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Figure 8. u(=,<, τ) Represents the solution at different fractional order of Example 2.

Example 3. Consider the (2 + time f ractional) dimensional diffusion model:

uβ
τ(=,<, τ) = u==(=,<, τ) + u<<(=,<, τ), β ∈ (0, 1] (45)

with the initial condition
u(=,<, 0) = e=+<. (46)

If β = 1, then the exact solution of Equation (45) is

u(=,<, τ) = e=+<+2τ (47)

Taking Shehu transform of Equation (45)

sβ

µβ

{
V(s, µ)− µ

s
u(0)

}
= S {u==(=,<, τ) + u<<(=,<, τ)} . (48)

Simplifying Equation (46), we get as

V(s, µ) =
µ

s
u(0) +

µβ

sβ
S {u==(=,<, τ) + u<<(=,<, τ)} . (49)

Applying inverse operator of Shehu transform, we get

u(=,<, τ) = u(0) + S−1
{

µβ

sβ
S {u==(=,<, τ) + u<<(=,<, τ)}

}
. (50)

Thus we get the following recursive scheme

u0(=,<, τ) = u(0) = e=+<,

um+1(=,<, τ) = S−1
{

µβ

sβ
S {um==(=,<, τ) + um<<(=,<, τ)}

}
, (51)

Using Equation (51), for m = 0, 1, 2, 3, · · · we get the following values
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u1(=,<, τ) = 2e=+<
τβ

(β)!
,

u2(=,<, τ) = 4e=+<
τ2β

(2β)!
,

u3(=,<, τ) = 8e=+<
τ3β

(3β)!
,

u4(=,<, τ) = 16e=+<
τ4β

(4β)!
,

(52)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for Example 3

u(=,<, τ) = e=+< + 2e=+<
τβ

(β)!
+ 4e=+<

τ2β

(2β)!
+ 8e=+<

τ3β

(3β)!
+ 16e=+<

τ4β

(4β)!
+ · · · . (53)

After simplification, we get

u(=,<, τ) = sin(=) cos(<)
{

1 + 2
τβ

(β)!
+ 4

τ2β

(2β)!
+ 8

τ3β

(3β)!
+ 16

τ4β

(4β)!
+ · · ·

}
. (54)

The close form solution become as

u(=,<, τ) = sin(=) cos(<)Eβ(2τβ). (55)

When β→ 1 the calculated result provide the exact solution in the close form

u(=,<, τ) = sin(=) cos(<)e2τ . (56)

Figures 9 and 10 show the exact and analytical solutions of Example 3. Both figures are almost coincident
confirming the close contact of both exact and obtained solution. Figures 11 the SDM solutions at different
fractional-order β are calculated for Example 3. The convergence phenomena of fractional-order solution towards
exact solution is observed. The method is found to be very simple and straightforward to solve fractional-order
different equations.

Figure 9. Exact solution of Example 3 at β = 1.
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Figure 10. Represents the analytical solution of Example 3 at β = 1.

Figure 11. The solution graph at different fractional order β.

Example 4. Consider the (2 + time f ractional) dimensional telegraph model:

uβ
τ(=,<, τ) =

1
2

u==(=,<, τ) +
1
2

u<<(=,<, τ)− 2ut(=,<, τ)− u(=,<, τ), β ∈ (1, 2], (57)

with initial conditions

u(=,<, 0) = sinh(=) sinh(<), uτ(=,<, 0) = −2 sinh(=) sinh(<). (58)

If β = 2, then the exact solution of Equation (57) is

u(=,<, τ) = sinh(=) sinh(<)e−2τ . (59)

Taking Shehu transform of Equation (57)

sβ

µβ

{
V(s, µ)− µ

s
u(0)− µ2

s2 u
′
(0)
}

= S
{

1
2

u==(=,<, τ) +
1
2

u<<(=,<, τ)− 2ut(=,<, τ)− u(=,<, τ)

}
, (60)

Simplifying Equation (60), we get as

V(s, µ) =
µβ

sβ
S
{

1
2

u==(=,<, τ) +
1
2

u<<(=,<, τ)− 2ut(=,<, τ)− u(=,<, τ)

}
+

µ

s
u(0) +

u2

s2 u
′
(0), (61)
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Applying inverse of Shehu transform, we get

u(=,<, τ) = u(0) + τu
′
(0) + S−1

{
µβ

sβ
S
{

1
2

u==(=,<, τ) +
1
2

u<<(=,<, τ)− 2ut(=,<, τ)− u(=,<, τ)

}}
. (62)

Thus we get the following recursive scheme

u0(=,<, τ) = u(0) + τu
′
(0) =

sinh(=) sinh(<)− 2t sinh(=) sinh(<),

um+1(=,<, τ) = S−1
{

µβ

sβ
S
{

1
2

um==(=,<, τ) +
1
2

um<<(=,<, τ)− 2umτ(=,<, τ)− um(=,<, τ)

}}
, (63)

Using Equation (63), for m = 0, 1, 2, 3, · · · we get the following values

u1(=,<, τ) = 4 sinh(=) sinh(<) τβ

(β)!
,

u2(=,<, τ) = −8
β(β− 1)! sinh(=) sinh(<)τ2β

(2β− 1)!(β)!
,

u3(=,<, τ) = 16
β(2β− 1)(β− 1)!(2β− 2)! sinh(=) sinh(<)τ3β−2

(β)!(2β− 1)!(3β− 2)!
,

(64)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for Example 4

u(=,<, τ) = sinh(=) sinh(<)− 2τ sinh(=) sinh(<) + 4
sinh(=) sinh(<)τβ

(β)!
− 8

β(β− 1)! sinh(=) sinh(<)τ2β

(2β− 1)!(β)!
+

16β(2β− 1)(β− 1)!(2β− 2)! sinh(=) sinh(<)τ3β−2

(β)!(2β− 1)!(3β− 2)!
+ · · · .

(65)

After simplification, we get

u(=,<, τ) = sinh(=) sinh(<)
{

1− 2τ + 4
τβ

β!
− 8

β(β− 1)!τ2β

(2β− 1)!(β)!
+

16β(2β− 1)(β− 1)!(2β− 2)!τ3β−2

(β)!(2β− 1)!(3β− 2)!
+ · · ·

}
. (66)

For particular case β→ 2, the Shehu transform solution become as

u(=,<, τ) = sinh(=) sinh(<)
{

1− 2τ + 4
τ2

2!
− 8

τ3

3!
+ 16

τ4

4!
+ · · ·

}
. (67)

The calculated result provide the exact solution in the close form

u(=,<, τ) = sinh(=) sinh(<)e−2τ . (68)

Figures 12 and 13, display the exact and analytical solutions of Example 4. The solution graph of SDM
is very similarly to the exact solution of Example 4. In Figure 14, we plotted the solutions of Example 4 at
different fractional-order β. The fractional-order solutions are found to be convergent towards the exact solution
of Example 4. It is investigated from the solution analysis that the present method is a sophisticated technique to
solve fractional-order problems.
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Figure 12. Exact solution of Example 4 at β = 2.

Figure 13. analytical solution of Example 4 at β = 2.

Figure 14. The solution graph at different fractional order β. of Example 4.

Example 5. Consider the non-linear (2 + time f ractional) dimensional Burger’s model:

uβ
τ(=,<, τ) = u==(=,<, τ) + u<<(=,<, τ) + u=(=,<, τ)u(=,<, τ), β ∈ (0, 1], (69)

with initial condition
u(=,<, 0) = =+<. (70)
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If β = 1, then the exact solution of Equation (69) is

u(=,<, τ) =
=+<
1− τ

. (71)

Taking Shehu transform of Equation (69)

sβ

µβ

{
V(s, µ)− µ

s
u(0)

}
= S {u==(=,<, τ) + u<<(=,<, τ) + u=(=,<, τ)u(=,<, τ)} , (72)

The simplifying Equation (72), we get as

V(s, µ) =
µ

s
u(0) +

µβ

sβ
S {u==(=,<, τ) + u<<(=,<, τ) + u=(=,<, τ)u(=,<, τ)} , (73)

By applying inverse of Shehu transform, we get

u(=,<, τ) = u(0) + τu
′
(0) + S−1

{
µβ

sβ
S {u==(=,<, τ) + u<<(=,<, τ) + u=(=,<, τ)u(=,<, τ)}

}
, (74)

Thus we get the following recursive scheme

u0(=,<, τ) = u(0) = =+<, (75)

um+1(=,<, τ) = S−1
{

µβ

sβ
S {um==(=,<, τ) + um<<(=,<, τ) + um=(=,<, τ)um(=,<, τ)}

}
. (76)

For nonlinear term, use the Equation (12) in recursive scheme (76), we obtain

um+1(=,<, τ) = S−1

{
µβ

sβ
S

{
um==(=,<, τ) + um<<(=,<, τ) +

∞

∑
m=0

Am(u0, u1, · · · )
}}

. (77)

Using Equation (77), for m = 0, 1, 2, 3, · · · we get the following values

u1(=,<, τ) = (=+<) tβ

(β)!
,

u2(=,<, τ) = 2(=+<) τ2β

(2β)!
,

u3(=,<, τ) = 4(=+<) τ3β

(3β)!
+ (=+<)(2β)!

t3β

β!β!(3β)!
,

(78)

...

Now using the values of u0, u1, u2, u3, · · · , we get Shehu transformation solution for example 5

u(=,<, τ) = =+<+ (=+<) τβ

(β)!
+ 2(=+<) τ2β

(2β)!
+ 4(=+<) τ3β

(3β)!
+ (=+<)(2β)!

τ3β

β!β!(3β)!
+ · · · . (79)

After simplification, we get

u(=,<, τ) = (=+<)
{

1 +
τβ

(β)!
+ 2

τ2β

(2β)!
+ 4

τ3β

(3β)!
+ (2β)!

τ3β

β!β!(3β)!
+ · · ·

}
. (80)

For particular case β→ 1, the Shehu transform solution become as

u(=,<, τ) = (=+<)
{

1 + τ + τ2 + τ3 + · · ·
}

. (81)
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The calculated result provide the exact solution in the close form

u(=,<, τ) =
=+<
1− τ

. (82)

Figures 15 and 16 are plotted to discuss the exact and analytical solutions of Example 5. The SDM solutions
are in good contact with the exact solution of the Example 5. Figures 17 and 18 are plotted to analyze the
fractional-order solutions of Example 5 at fractional-order β = 0.75 and 0.50 respectively. The graphical analysis
has verified the applicability of the proposed method.

Figure 15. Exact solution of Example 5 at β = 1.

Figure 16. Represents the analytical solution of Example 5 at β = 1.

Figure 17. The solution of fractional-order β = 0.75 of Example 5.
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Figure 18. The solution of fractional-order β = 0.5 of Example 5.

5. Results and Discussion

In the present research work, we implemented a new analytical technique SDM for the solution of
some important problems which are frequently arising in science and engineering, such as hyperbolic
wave equation, heat equation, diffusion equation, telegraph and Burgers equations. The Caputo
definition of fractional-derivative is used to define fractional-derivative. The proposed method is
the combination of Shehu transformation and Adomian decomposition method which is known as
Shehu decomposition method. For applicability and novelty of present method, we applied it different
physical problems for applied sciences. These problems have been solved by using SDM for both
fractional and integer-order of the targeted problems. In this connection some figure analysis have
been done to demonstrate the obtained results in a sophisticated manner. It is investigated that SDM
solution have a very close contact with the exact solution of the problems. It is also observed that the
fractional-order problems are convergent towards the solution of an integer-order problem. Moreover,
the high rate of convergence of the current method is noted during the simulation. It is calculated
that the SDM can be considered as one of the best analytical technique to solve fractional partial
differential equations.

6. Conclusions

In the present article, we presented some fractional-view analysis of physical problems, arising
in science and engineering. A new and sophisticated analytical technique, which is known as
Shehu transform decomposition method is implemented for both fractional and integer-orders of the
problems. The Caputo definition of fractional derivative is used to express fractional-order derivative.
For applicability and reliability of the proposed methods, some illustrative examples are presented
from different areas of applied science. It has been investigated through graphical representation that
the present technique provides an accurate and deserving analysis about the physical happening of
the problems. It is observed through simulations of the present algorithm that as fractional-order
of the derivative approaches to integer order of the problem then fractional-order solutions are
convergent to integer-order solutions. Moreover, the present method is preferred as compared to other
method because of its better rate of convergence. This direction motivates the researchers towards the
implementation of the current method for other non-linear fractional partial differential equations.
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