On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case
Abstract
:1. Introduction
2. Preliminaries
The Meixner Polynomials
- 1.
- Second-order difference equation:
- 2.
- Structure relations. For every :
- 3.
- Squared norm. For every :
- 4.
- The value at the left endpoint initial extreme:
- 5.
- Forward and backward difference operators. For every :
- 6.
- Mehler–Heine type formula (Equation (35) in [19]):
3. The Sobolev-Type Meixner Polynomials
Connection Formula and Hypergeometric Representation
4. Second-Order Linear Difference Equation
5. The -Term Recurrence Relation
6. Mehler–Heine-Type Formula
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meixner, J. Orthogonale polynomsysteme mit einem besonderen Gestalt der erzeugenden funktion. J. Lond. Math. Soc. 1934, 9, 6–13. [Google Scholar] [CrossRef]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Mathematics and its Applications Series; Gordon and Breach: New York, NY, USA, 1978. [Google Scholar]
- Ismail, M.E.H. Classical and Quantum Orthogonal Polynomials in One Variable; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, CA, USA, 2005; Volume 98. [Google Scholar]
- Nikiforov, A.F.; Uvarov, V.B.; Suslov, S.K. Classical Orthogonal Polynomials of a Discrete Variable; Springer Series in Computational Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Althammer, P. Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation. J. Reine Angew. Math. 1962, 211, 192–204. [Google Scholar] [CrossRef]
- Marcellán, F.; Xu, Y. On Sobolev orthogonal polynomials. Expo. Math. 2015, 33, 308–352. [Google Scholar] [CrossRef] [Green Version]
- Bavinck, H. On polynomials orthogonal with respect to an inner product involving differences. J. Comp. Appl. Math. 1995, 57, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Bavinck, H. On polynomials orthogonal with respect to an inner product involving differences (the general case). Appl. Anal. 1995, 59, 233–240. [Google Scholar] [CrossRef]
- Bavinck, H.; Haeringen, H.V. Difference equations for generalized Meixner polynomials. J. Math. Anal. Appl. 1994, 184, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Bavinck, H.; Koekoek, R. Difference operators with sobolev type meixner polynomials as eigenfunctions. Comput. Math. Appl. 1998, 36, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Khwaja, S.F.; Olde-Daalhui, A.B. Uniform asymptotic approximations for the Meixner–Sobolev polynomials. Anal. Appl. 2012, 10, 345–361. [Google Scholar] [CrossRef]
- Moreno-Balcázar, J. δ-Meixner-Sobolev orthogonal polynomials: Mehler–heine type formula and zeros. J. Comput. Appl. Math. 2015, 284, 228–234. [Google Scholar] [CrossRef]
- Huertas, E.J.; Soria, A. On Second Order q-Difference Equations Satisfied by Al-Salam–Carlitz I-Sobolev Type Polynomials of Higher Order. Mathematics 2020, 8, 1300. [Google Scholar]
- Nodarse, R.x.; Marcellán, F. Difference equation for modifications of Meixner polynomials. J. Math. Anal. Appl. 1995, 194, 250–258. [Google Scholar]
- Huertas, E.J.; Marcellán, F.; Pérez-Valero, M.F.; Quintana, Y. Asymptotics for Laguerre–Sobolev type orthogonal polynomials modified within their oscillatory regime. Appl. Math. Comput. 2014, 236, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Costas, R.S.; Sanchez-Lara, J.F. Extensions of discrete classical orthogonal polynomials beyond the orthogonality. J. Comput. Appl. Math. 2009, 225, 440–451. [Google Scholar] [CrossRef] [Green Version]
- Álvarez de Morales, M.; Pérez, T.E.; Piñar, M.A.; Ronveaux, A. Non-standard orthogonality for Meixner polynomials. Orthogonal polynomials: Numerical and symbolic algorithms (Leganés, 1998). Electron. Trans. Numer. Anal. 1999, 9, 1–25. [Google Scholar]
- Dominici, D. Mehler–Heine type formulas for Charlier and Meixner polynomials. Ramanujan J. 2016, 39, 271–289. [Google Scholar] [CrossRef] [Green Version]
- Marcellán, F.; Ronveaux, A. On a class of polynomials orthogonal with respect to a discrete Sobolev inner product. Indag. Math. 1990, 4, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Rainville, D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costas-Santos, R.S.; Soria-Lorente, A.; Vilaire, J.-M. On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case. Mathematics 2022, 10, 1952. https://doi.org/10.3390/math10111952
Costas-Santos RS, Soria-Lorente A, Vilaire J-M. On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case. Mathematics. 2022; 10(11):1952. https://doi.org/10.3390/math10111952
Chicago/Turabian StyleCostas-Santos, Roberto S., Anier Soria-Lorente, and Jean-Marie Vilaire. 2022. "On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case" Mathematics 10, no. 11: 1952. https://doi.org/10.3390/math10111952
APA StyleCostas-Santos, R. S., Soria-Lorente, A., & Vilaire, J.-M. (2022). On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case. Mathematics, 10(11), 1952. https://doi.org/10.3390/math10111952