A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations
Abstract
:1. Introduction
2. Preliminaries
- (1)
- If , then holds;
- (2)
- For different mode multiplications (), it follows that
- (3)
- If , then
- (4)
- The k-mode multiplication commutes with respect to the inner product, that is,
3. A Modified Conjugate Residual Method for Solving the Tensor Equations
Algorithm 1 A modified conjugate residual method for solving Equation (1) |
|
Algorithm 2 A preconditioned modified conjugate residual method for solving Equation (1) |
|
4. Numerical Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weaver, J. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors. Am. Math. Month. 1985, 92, 711–717. [Google Scholar] [CrossRef]
- Datta, L.; Morgera, S. Some results on matrix symmetries and a pattern recognition application. IEEE Trans. Signal Process. 1986, 34, 992–994. [Google Scholar] [CrossRef]
- Datta, L.; Morgera, S. On the reducibility of centrosymmetric matrices-applications in engineering problems. Circ. Syst. Signal Process. 1989, 8, 71–96. [Google Scholar] [CrossRef]
- Datta, B.N.; Lin, W.; Wang, J.N. Robust partial pole assignment for vibrating systems with aerodynamic effects. IEEE Trans. Automat. Control 2006, 51, 1979–1984. [Google Scholar] [CrossRef]
- Liang, M.L.; Zheng, B.; Zhao, R.J. Alternating iterative methods for solving tensor equations with applications. Numer. Algorithms 2018, 80, 1437–1465. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, B. Scaled three-term derivative-free methods for solving large-scale nonlinear monotone equations. Numer. Algorithms 2021, 87, 1343–1367. [Google Scholar] [CrossRef]
- Zhang, F.X.; Wei, M.S.; Li, Y.; Zhao, J. An efficient method for least-squares problem of the quaternion matrix equation. Linear Multilinear Algebra 2020, 1–13. [Google Scholar] [CrossRef]
- Zhang, F.X.; Wei, M.S.; Li, Y.; Zhao, J. An efficient real representation method for least squares problem of the quaternion constrained matrix equation AXB + CYD = E. Int. J. Comput. Math. 2021, 98, 1408–1419. [Google Scholar] [CrossRef]
- Grasedyck, L. Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 2004, 72, 247–265. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.Z.; Golub, G.H.; Ng, M.K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 2003, 24, 603–626. [Google Scholar] [CrossRef] [Green Version]
- Li, X.T.; Ng, M.K. Solving sparse non-negative tensor equations: Algorithms and applications. Front. Math. China 2015, 10, 649–680. [Google Scholar] [CrossRef]
- Li, B.W.; Sun, Y.S.; Yu, Y. Iterative and direct Chebyshev collocation spectral methods for one-dimensional radiative heat transfer. Int. J. Heat Mass Transf. 2008, 51, 5887–5894. [Google Scholar] [CrossRef]
- Sun, Y.S.; Ma, J.; Li, B.W. Chebyshev collocation spectral method for three-dimensional transient coupled radiative conductive heat transfer. J. Heat Transfer 2012, 134, 092701. [Google Scholar] [CrossRef]
- Li, B.W.; Tian, S.; Sun, Y.S.; Hu, Z.M. Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method. J. Comput. Phys. 2010, 229, 1198–1212. [Google Scholar] [CrossRef]
- Malek, A.; Momeni-Masuleh, S.H. A mixed collocation-finite difference method for 3D microscopic heat transport problem. J. Comput. Appl. Math. 2008, 217, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Lu, L.Z. A gradient based iterative solutions for Sylvester tensor equations. Math. Probl. Eng. 2013, 2013, 819479. [Google Scholar] [CrossRef]
- Beik, F.P.A.; Asl, S.A. Residual norm steepest descent based iterative algorithms for Sylvester tensor equations. J. Math. Model. 2015, 2, 115–131. [Google Scholar]
- Li, N.; Navasca, C.; Glenn, C. Iterative methods for symmetric outer product tensor decomposition. Electron. Trans. Numer. Anal. 2015, 44, 124–139. [Google Scholar]
- Bentbib, A.H.; Guide, M.E.; Jbilou, K.; Onunwor, E.; Reichel, L. Solution methods for linear discrete ill-posed problems for color image restoration. BIT Numer. Math. 2018, 58, 555–578. [Google Scholar] [CrossRef]
- Li, F.; Ng, M.K.; Plemmons, R.J. Coupled segmentation and denoising/deblurring for hyperspectral material identification. Numer. Linear Algebra Appl. 2012, 19, 153–173. [Google Scholar] [CrossRef]
- Hajarian, M. Symmetric solutions of the coupled generalized Sylvester matrix equations via BCR algorithm. J. Franklin Inst. 2016, 353, 3233–3248. [Google Scholar] [CrossRef]
- Hajarian, M. Computing symmetric solutions of general Sylvester matrix equations via Lanczos version of biconjugate residual algorithm. Comput. Math. Appl. 2018, 76, 686–700. [Google Scholar] [CrossRef]
- Wang, W.; Ding, F.; Dai, J. Maximum likelihood least squares identification for systems with autoregressive moving average noise. Appl. Math. Model. 2012, 36, 1842–1853. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, L.Z. A projection method and Kronecker product preconditioner for solving Sylvester tensor equations. Sci. China Math. 2012, 55, 1281–1292. [Google Scholar] [CrossRef]
- Beik, F.P.A.; Movahed, F.S.; Ahmadi-Asl, S. On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations. Linear Algebra Appl. 2016, 23, 444–466. [Google Scholar] [CrossRef]
- Karimi, S.; Dehghan, M. Global least squares method based on tensor form to solve linear systems in Kronecker format. Trans. Inst. Meas. Control 2018, 40, 2378–2386. [Google Scholar] [CrossRef]
- Toutounian, F.; Karimi, S. Global least squares method (GlLSQR) for solving general linear systems with several right-hand sides. Appl. Math. Comput. 2006, 178, 452–460. [Google Scholar]
- Wang, Q.W.; Xu, X.X.; Duan, X.F. Least squares solution of the quaternion Sylvester tensor equation. Linear Multilinear Algebra 2021, 69, 104–130. [Google Scholar] [CrossRef]
- Xu, X.J.; Wang, Q.W. Extending BiCG and BiCR methods to solve the Stein tensor equation. Comput. Math. Appl. 2019, 77, 3117–3127. [Google Scholar] [CrossRef]
- Li, T.; Wang, Q.W.; Duan, X.F. Numerical algorithms for solving discrete Lyapunov tensor equation. J. Comput. Appl. Math. 2020, 370, 112676. [Google Scholar] [CrossRef]
- Huang, B.H.; Li, W. Numerical subspace algorithms for solving the tensor equations involving Einstein product. Numer. Linear Algebra Appl. 2021, 28, e2351. [Google Scholar] [CrossRef]
- Hajarian, M. Convergence properties of BCR method for generalized Sylvester matrix equation over generalized reflexive and anti-reflexive matrices. Linear Multilinear Algebra 2017, 66, 1975–1990. [Google Scholar] [CrossRef]
- Hajarian, M. Reflexive periodic solutions of general periodic matrix equations. Math. Methods Appl. Sci. 2019, 42, 3527–3548. [Google Scholar] [CrossRef]
- Hajarian, M. Conjugate gradient-like methods for solving general tensor equation with Einstein product. J. Franklin Inst. 2020, 357, 4272–4285. [Google Scholar] [CrossRef]
- Najafi-Kalyani, M.; Beik, F.P.A.; Jbilou, K. On global iterative schemes based on Hessenberg process for (ill-posed) Sylvester tensor equations. J. Comput. Appl. Math. 2020, 373, 112216. [Google Scholar] [CrossRef]
- Liu, L.S.; Wang, Q.W.; Chen, J.F.; Xie, Y.Z. An exact solution to a quaternion matrix equation with an application. Symmetry 2022, 14, 375. [Google Scholar] [CrossRef]
- Mehany, M.S.; Wang, Q.W. Three symmetrical systems of coupled Sylvester-like quaternion matrix equations. Symmetry 2022, 14, 550. [Google Scholar] [CrossRef]
- Bentbib, A.H.; El-Halouy, S.; Sadek, E.M. Krylov subspace projection method for Sylvester tensor equation with low rank right-hand side. Numer. Algorithms 2020, 84, 1411–1430. [Google Scholar] [CrossRef]
- Heyouni, M.; Saberi-Movahed, F.; Tajaddini, A. A tensor format for the generalized Hessenberg method for solving Sylvester tensor equations. J. Comput. Appl. Math. 2020, 377, 112878. [Google Scholar] [CrossRef]
- Lv, C.Q.; Ma, C.F. A modified CG algorithm for solving generalized coupled Sylvester tensor equations. Appl. Math. Comput. 2020, 365, 124699. [Google Scholar] [CrossRef]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2003; Volume 82. [Google Scholar]
- Saad, Y. ILUT: A dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1994, 1, 387–402. [Google Scholar] [CrossRef]
- Tallec, P.L.; Roeck, Y.H.D.; Vidrascu, M. Domain decomposition methods for large linearly elliptic three-dimensional problems. J. Comput. Appl. Math. 1991, 34, 93–117. [Google Scholar] [CrossRef] [Green Version]
- Loan, C.F.V.; Pitsianis, N. Approximation with Kronecker products. In Linear Algebra for Large Scale and Real-Time Applications (Leuven, 1992); Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp. 293–314. [Google Scholar]
- Langville, A.N.; Stewar, W.J. A Kronecker product approximate preconditioner for SANs. Numer. Linear Algebra Appl. 2004, 11, 723–752. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.Q.; Luo, Z.Y. Tensor Analysis: Spectral Theory and Special Tensors; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Qi, L.Q.; Chen, H.; Chen, Y. Tensor Eigenvalues and Their Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kolda, T.; Bader, B. The TOPHITS model for higher-order web link analysis, Workshop on Link Analysis, Counterterrorism Security. Minnesota 2006, 7, 26–29. [Google Scholar]
- Kolda, T.; Bader, B. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
Algorithms | MCG [40] | MCR | PMCR | ||||||
---|---|---|---|---|---|---|---|---|---|
IT | CPU | RES | IT | CPU | RES | IT | CPU | RES | |
15 | 0.1463 | 5.9784 × 10 | 14 | 0.1396 | 3.6714 × 10 | 5 | 0.0313 | 6.2438 × 10 | |
301 | 0.9928 | 9.6023 × 10 | 296 | 0.9434 | 8.8758 × | 62 | 0.2183 | 6.2891 × 10 | |
632 | 2.7739 | 9.6572 × | 624 | 2.6599 | 9.5403 × 10 | 149 | 0.5866 | 8.6559 × | |
1189 | 8.0489 | 6.4185 × 10 | 1152 | 7.8583 | 4.5580 × 10 | 359 | 2.2154 | 1.5868 × 10 | |
1696 | 10.2321 | 9.2562 × 10 | 1648 | 9.7157 | 9.1825 × 10 | 478 | 3.0135 | 4.8919 × 10 |
Algorithms | MCG [40] | MCR | PMCR | ||||||
---|---|---|---|---|---|---|---|---|---|
IT | CPU | RES | IT | CPU | RES | IT | CPU | RES | |
(1) | 232 | 3.1112 | 9.7305 × 10 | 226 | 3.0947 | 8.6237 | 58 | 0.8934 | 8.1465 × 10 |
(2) | 321 | 4.2594 | 8.8469 × 10 | 299 | 3.9742 | 8.9632 × 10 | 66 | 1.0423 | 7.7125 × |
(3) | 283 | 3.9432 | 9.9765 × 10 | 278 | 3.9099 | 9.3321 × 10 | 63 | 0.9578 | 9.0356 × 10 |
(4) | 400 | 5.2723 | 8.9944 × 10 | 382 | 5.2150 | 9.1298 | 82 | 2.1283 | 7.9046 × 10 |
(5) | 376 | 5.0942 | 9.4951 × 10 | 358 | 4.9285 | 9.8407 | 79 | 1.9201 | 8.9957 × 10 |
(6) | 487 | 6.0027 | 9.3902 × 10 | 462 | 5.9755 | 9.4925 × 10 | 124 | 2.4562 | 9.1929 × 10 |
Algorithms | MCG [40] | MCR | PMCR | ||||||
---|---|---|---|---|---|---|---|---|---|
IT | CPU | RES | IT | CPU | RES | IT | CPU | RES | |
76 | 0.5844 | 3.1415 × 10 | 74 | 0.5179 | 4.3350 × 10 | 20 | 0.1248 | 2.5513 × 10 | |
465 | 3.4385 | 8.1439 × 10 | 442 | 3.1806 | 6.1823 × 10 | 102 | 0.6026 | 7.6829 × 10 | |
130 | 0.9715 | 1.1913 × 10 | 128 | 0.9237 | 1.0795 × 10 | 42 | 0.2556 | 6.4513 × 10 | |
1310 | 9.5945 | 9.1953 × 10 | 1289 | 9.1217 | 8.3788 × 10 | 363 | 2.0159 | 7.2917 × 10 | |
1255 | 9.0559 | 8.2675 × 10 | 1210 | 8.8567 | 7.4489 × 10 | 325 | 1.8219 | 7.6519 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Wang, Q.-W.; Zhang, X.-F. A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations. Mathematics 2022, 10, 1730. https://doi.org/10.3390/math10101730
Li T, Wang Q-W, Zhang X-F. A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations. Mathematics. 2022; 10(10):1730. https://doi.org/10.3390/math10101730
Chicago/Turabian StyleLi, Tao, Qing-Wen Wang, and Xin-Fang Zhang. 2022. "A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations" Mathematics 10, no. 10: 1730. https://doi.org/10.3390/math10101730
APA StyleLi, T., Wang, Q.-W., & Zhang, X.-F. (2022). A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations. Mathematics, 10(10), 1730. https://doi.org/10.3390/math10101730