Multimode Representation of the Magnetic Field for the Analysis of the Nonlinear Behavior of Solar Activity as a Driver of Space Weather
Abstract
:1. Introduction
2. Main Equations
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cade, W.B., III; Chan-Park, C. The origin of “space weather”. Space Weather 2015, 13, 99–103. [Google Scholar] [CrossRef]
- Buzulukova, N. (Ed.) Extreme Events in Geospace: Origins, Predictability, and Consequences; Elsevier: Cambrige, MA, USA, 2017. [Google Scholar]
- Poppe, B.B.; Jorden, K.P. Sentinels of the Sun: Forecasting Space Weather; Big Earth Publishing: Boulder, CO, USA, 2006. [Google Scholar]
- Berghmans, D.; Van der Linden, R.A.M.; Vanlommel, P.; Warnant, R.; Zhukov, A.; Robbrecht, E.; Clette, F.; Podladchikova, O.; Nicula, B.; Hochedez, J.F.; et al. Solar activity: Nowcasting and forecasting at the SIDC. Ann. Geophys. 2005, 23, 3115–3128. [Google Scholar] [CrossRef] [Green Version]
- Miteva, R.; Samwel, S.W. M-Class Solar Flares in Solar Cycles 23 and 24: Properties and Space Weather Relevance. Universe 2022, 8, 39. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, X.; Feng, X.; Liu, C.A.; Xiang, N.; Li, Z.; Lu, W. Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method. Universe 2022, 8, 30. [Google Scholar] [CrossRef]
- Zharkova, V.V.; Shepherd, S.J.; Popova, E.; Zharkov, S.I. Heartbeat of the Sun from Principal Component Analysis and prediction of solar activity on a millenium timescale. Sci. Rep. 2015, 5, 15689. [Google Scholar] [CrossRef] [Green Version]
- Tuohy, A.; Zack, J.; Haupt, S.E.; Sharp, J.; Ahlstrom, M.; Dise, S.; Grimit, E.; Mohrlen, C.; Lange, M.; Casado, M.G.; et al. Solar forecasting: Methods, challenges, and performance. IEEE Power Energy Mag. 2015, 13, 50–59. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renew. Energy 2017, 105, 569–582. [Google Scholar] [CrossRef]
- Okoh, D.I.; Seemala, G.K.; Rabiu, A.B.; Uwamahoro, J.; Habarulema, J.B.; Aggarwal, M. A Hybrid Regression-Neural Network (HR-NN) method for forecasting the solar activity. Space Weather 2018, 16, 1424–1436. [Google Scholar] [CrossRef]
- Colak, T.; Qahwaji, R. Automated solar activity prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 2009, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Reikard, G. Forecasting long-term solar activity with time series models: Some cautionary findings. J. Atmos. Sol.-Terr. Phys. 2020, 211, 105465. [Google Scholar] [CrossRef]
- Joselyn, J.A. Geomagnetic activity forecasting: The state of the art. Rev. Geophys. 1995, 33, 383–401. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.L.; Zhu, D.Q.; Billings, S.A.; Balikhin, M.A. Forecasting the geomagnetic activity of the Dst index using multiscale radial basis function networks. Adv. Space Res. 2007, 40, 1863–1870. [Google Scholar] [CrossRef]
- Hernandez, J.V.; Tajima, T.; Horton, W. Neural net forecasting for geomagnetic activity. Geophys. Res. Lett. 1993, 20, 2707–2710. [Google Scholar] [CrossRef]
- Jackson, B.V.; Yu, H.S.; Buffington, A.; Hick, P.P.; Tokumaru, M.; Fujiki, K.; Kim, J.; Yun, J. A daily determination of BZ using the Russell-McPherron effect to forecast geomagnetic activity. Space Weather 2019, 17, 639–652. [Google Scholar] [CrossRef] [Green Version]
- Haines, C.; Owens, M.J.; Barnard, L.; Lockwood, M.; Ruffenach, A.; Boykin, K.; McGranaghan, R. Forecasting Occurrence and Intensity of Geomagnetic Activity With Pattern-Matching Approaches. Space Weather 2021, 19, e2020SW002624. [Google Scholar] [CrossRef]
- Ulsrud, K.; Winther, T.; Palit, D.; Rohracher, H.; Sandgren, J. The Solar Transitions research on solar mini-grids in India: Learning from local cases of innovative socio-technical systems. Energy Sustain. Dev. 2011, 15, 293–303. [Google Scholar] [CrossRef]
- Wik, M.; Pirjola, R.; Lundstedt, H.; Viljanen, A.; Wintoft, P.; Pulkkinen, A. April. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann. Geophys. 2009, 27, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Haines, O.D.; Kennewell, J.; Lynch, M. Solar radio burst statistics and implications for space weather effects. Space Weather 2017, 15, 1511–1522. [Google Scholar]
- Nwankwo, V.U.; Jibiri, N.N.; Kio, M.T. The impact of space radiation environment on satellites operation in near-Earth space. In Satellites Missions and Technologies for Geosciences; InTechOpen Publishing: London, UK, 2020. [Google Scholar]
- Senatore, G.; Mastroleo, F.; Leys, N.; Mauriello, G. Effect of microgravity and space radiation on microbes. Future Microbiol. 2018, 13, 831–847. [Google Scholar] [CrossRef]
- Miura, K.; Olsen, C.M.; Rea, S.; Marsden, J.; Green, A.C. Do airline pilots and cabin crew have raised risks of melanoma and other skin cancers? Systematic review and meta-analysis. Br. J. Dermatol. 2019, 181, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Dreger, S.; Wollschläger, D.; Schafft, T.; Hammer, G.P.; Blettner, M.; Zeeb, H. Cohort study of occupational cosmic radiation dose and cancer mortality in German aircrew, 1960–2014. Occup. Environ. Med. 2020, 77, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.W. Space Radiation Environment. In Handbook of Bioastronautics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 335–346. [Google Scholar]
- Stewart, G. Omaha Field—A Magnetostatic Cosmic Radiation Shield for a Crewed Mars Facility. Terraforming Mars 2021, 2021, 281–296. [Google Scholar]
- Lim, M.K. Cosmic rays: Are air crew at risk? Occup. Environ. Med. 2002, 59, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, N.V.; Popova, H.; Panasyuk, M.I. Empirical model of long-time variations of galactic cosmic ray particle fluxes. J. Geophys. Res. Space Phys. 2017, 122, 1463–1472. [Google Scholar] [CrossRef]
- Kamide, Y.; Kusano, K. No major solar flares but the largest geomagnetic storm in the present solar cycle. Space Weather 2015, 13, 365–367. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Yang, D.; Ding, M. An Approach for Predicting Global Ionospheric TEC Using Machine Learning. Remote Sens. 2022, 14, 1585. [Google Scholar] [CrossRef]
- Schmolter, E.; Berdermann, J. Predicting the Effects of Solar Storms on the Ionosphere Based on a Comparison of Real-Time Solar Wind Data with the Best-Fitting Historical Storm Event. Atmosphere 2021, 12, 1684. [Google Scholar] [CrossRef]
- Zendehboudi, A.; Baseer, M.A.; Saidur, R. Application of support vector machine models for forecasting solar and wind energy resources: A review. J. Clean. Prod. 2018, 199, 272–285. [Google Scholar] [CrossRef]
- Inman, R.H.; Pedro, H.T.; Coimbra, C.F. Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 2013, 39, 535–576. [Google Scholar] [CrossRef]
- Perez, R.; Moore, K.; Wilcox, S.; Renné, D.; Zelenka, A. Forecasting solar radiation–Preliminary evaluation of an approach based upon the national forecast database. Sol. Energy 2007, 81, 809–812. [Google Scholar] [CrossRef]
- Space Weather Service Network of European Space Agency. Available online: https://swe.ssa.esa.int/current-space-weather (accessed on 14 April 2022).
- Kraft, S.; Puschmann, K.G.; Luntama, J.P. Remote sensing optical instrumentation for enhanced space weather monitoring from the L1 and L5 Lagrange points. In Proceedings of the International Conference on Space Optics—ICSO 2016, Biarritz, France, 18–21 October 2016; Volume 10562, p. 105620F. [Google Scholar]
- Balogh, A.; Hudson, H.; Petrovay, K.; Steiger, R. (Eds.) The Solar Activity Cycle: Physical Causes and Consequences; Springer: Berlin/Heidelberg, Germany, 2015; Volume 53. [Google Scholar]
- Parker, E.N. Hydrodynamic dynamo models. Astrophys. J. 1955, 122, 293–314. [Google Scholar] [CrossRef]
- Gleissberg, W. The eighty-year cycle in auroral frequency numbers. J. Brit. Astr. Assoc. 1965, 75, 227–231. [Google Scholar]
- Schove, D.J. Sunspot Cycles; Benchmark Papers in Geology; Hutchinson Ross Publishing Co.: Stroudsburg, PA, USA, 1983; 410p. [Google Scholar]
- Sakurai, K. Quasi-biennial variation of the solar neutrino flux and solar activity. Nature 1979, 278, 146–148. [Google Scholar] [CrossRef]
- Deng, L.H.; Fei, Y.; Deng, H.; Mei, Y.; Wang, F. Spatial distribution of quasi-biennial oscillations in high-latitude solar activity. Mon. Not. R. Astron. Soc. 2020, 494, 4930–4938. [Google Scholar] [CrossRef]
- Berdyugina, S.V.; Henry, G.W. Butterfly diagram and activity cycles in HR 1099. Astrophys. J. 2007, 659, L157–L160. [Google Scholar] [CrossRef] [Green Version]
- Popova, E.P. Generation of magnetic field waves in celestial bodies by spatially separated sources. Dokl. Phys. 2017, 62, 371–373. [Google Scholar] [CrossRef]
- Boyer, D.W.; Levy, E.H. Multiple periodicities in the solar magnetic field-Possible origin in a multiple-mode solar dynamo. Astrophys. J. 1992, 396, 340–350. [Google Scholar] [CrossRef]
- Merzlyakov, V.L. Solar activity as a result of two-wave magnetic flux generation. Sol. Phys. 1997, 170, 425–435. [Google Scholar] [CrossRef]
- Popova, E.; Zharkova, V.; Shepherd, S.; Zharkov, S. On a role of quadruple component of magnetic field in defining solar activity in grand cycles. J. Atmos. Sol. Terr. Phys. 2018, 176, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Ruzmaikin, A.A. Solar cycle as strange attractor. Comm. Astrophys. 1981, 9, 85–93. [Google Scholar]
- Kitiashvili, I.; Kosovichev, A.G. Application of Data Assimilation Method for Predicting Solar Cycles. Astrophys. J. 2008, 688, L49. [Google Scholar] [CrossRef]
- Kitiashvili, I.; Kosovichev, A.G. Nonlinear dynamical modeling of solar cycles using dynamo formulation with turbulent magnetic helicity. Geophys. Astrophys. Fluid Dyn. 2009, 103, 53–68. [Google Scholar] [CrossRef]
- Nefedov, S.; Sokoloff, D. Parker’s dynamo as specific behavior of a dynamical system. Astron. Rep. 2010, 54, 247–253. [Google Scholar] [CrossRef]
- Popova, H. Double Magnetic Solar Cycle and Dynamical Systems. Magnetohydrodynamics 2013, 49, 59–67. [Google Scholar] [CrossRef]
- Sobko, G.; Zadkov, V.; Sokoloff, D.; Trukhin, V. Geomagnetic reversals in a simple geodynamo model. Geomagn. Aeron. 2012, 52, 254–260. [Google Scholar] [CrossRef]
- Sokoloff, D.; Nefedov, S. Low-mode approximation in the problem of star dynamo. Numer. Methods Program. 2007, 8, 195–204. [Google Scholar]
- Tarbeeva, S.M.; Sokoloff, D.D. Oppositely directed waves of stellar activity in simple dynamo models. Astron. Rep. 2016, 60, 682–686. [Google Scholar] [CrossRef]
- Deng, S.; Ji, J.; Wen, G.; Xu, H. A comparative study of the dynamics of a three-disk dynamo system with and without time delay. Appl. Math. Comput. 2021, 399, 126016. [Google Scholar] [CrossRef]
- Brandenburg, A. The Inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 2001, 550, 824–840. [Google Scholar] [CrossRef]
- Brandenburg, A. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 2005, 417, 1–209. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, A.; Subramanian, K. Large scale dynamos with ambipolar diffusion nonlinearity. Astron. Astrophys. 2000, 361, 33–36. [Google Scholar]
- Brandenburg, A. Advances in mean-field dynamo theory and applications to astrophysical turbulence. J. Plasma Phys. 2018, 84, 735840404. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, E.; Popov, A.I.; Sagdeev, R. Multimode Representation of the Magnetic Field for the Analysis of the Nonlinear Behavior of Solar Activity as a Driver of Space Weather. Mathematics 2022, 10, 1655. https://doi.org/10.3390/math10101655
Popova E, Popov AI, Sagdeev R. Multimode Representation of the Magnetic Field for the Analysis of the Nonlinear Behavior of Solar Activity as a Driver of Space Weather. Mathematics. 2022; 10(10):1655. https://doi.org/10.3390/math10101655
Chicago/Turabian StylePopova, Elena, Anatoli I. Popov, and Roald Sagdeev. 2022. "Multimode Representation of the Magnetic Field for the Analysis of the Nonlinear Behavior of Solar Activity as a Driver of Space Weather" Mathematics 10, no. 10: 1655. https://doi.org/10.3390/math10101655
APA StylePopova, E., Popov, A. I., & Sagdeev, R. (2022). Multimode Representation of the Magnetic Field for the Analysis of the Nonlinear Behavior of Solar Activity as a Driver of Space Weather. Mathematics, 10(10), 1655. https://doi.org/10.3390/math10101655