Thermodynamic Interpretation of a Machine-Learning-Based Response Surface Model and Its Application to Pharmacodynamic Synergy between Propofol and Opioids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Preprocessing
2.1.1. Clinical Trials
2.1.2. Data Preprocessing and Pharmacokinetic Simulation
2.2. Model Derivation
2.2.1. Thermodynamic Interpretation
2.2.2. Machine-Learning-Based Response Surface Model
2.2.3. Multi-Drug MLRSM
3. Results
3.1. Validation and Visualization of the Single-Drug MLRSM
3.2. Two-Drug MLRSM vs. Conventional RSMs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LaPierre, C.D.; Johnson, K.B.; Randall, B.R.; White, J.L.; Egan, T.D. An exploration of remifentanil-propofol combinations that lead to a loss of response to esophageal instrumentation, a loss of responsiveness, and/or onset of intolerable ventilatory depression. Anesth. Analg. 2011, 113, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, J.F.A.; Eger, E.; Sonner, J.M.; Shafer, S.L. Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth. Analg. 2008, 107, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Estafanous, F.G.; Brum, J.M.; Ribeiro, M.P.; Estafanous, M.; Starr, N.; Ferrario, C. Analysis of heart rate variability to assess hemodynamic alterations following induction of anesthesia. J. Cardiothorac. Vasc. Anesth. 1992, 6, 651–657. [Google Scholar] [CrossRef]
- Galletly, D.C.; Corfiatis, T.; Westenberg, A.M.; Robinson, B.J. Heart rate periodicities during induction of propofol-nitrous oxide-isoflurane anaesthesia. Br. J. Anaesth. 1992, 68, 360–364. [Google Scholar] [CrossRef] [Green Version]
- Win, N.N.; Fukayama, H.; Kohase, H.; Umino, M. The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anesth. Analg. 2005, 101, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Zickmann, B.; Hofmann, H.C.; Pottkämper, C.; Knothe, C.; Boldt, J.; Hempelmann, G. Changes in heart rate variability during induction of anesthesia with fentanyl and midazolam. J. Cardiothorac. Vasc. Anesth. 1996, 10, 609–613. [Google Scholar] [CrossRef]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Gans, F.; Schumann, A.Y.; Kantelhardt, J.W.; Penzel, T.; Fietze, I. Cross-modulated amplitudes and frequencies characterize interacting components in complex systems. Phys. Rev. Lett. 2009, 102, 098701. [Google Scholar] [CrossRef]
- Diz, J.; Río, R.D.; Lamas, A.; Mendoza, M.; Durán, M.; Ferreira, L. Analysis of pharmacodynamic interaction of sevoflurane and propofol on Bispectral Index during general anaesthesia using a response surface model. Br. J. Anaesth. 2010, 104, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.B.; Syroid, N.D.; Gupta, D.K.; Manyam, S.C.; Egan, T.D.; Huntington, J.; White, J.L.; Tyler, D.; Westenskow, D.R. An evaluation of remifentanil propofol response surfaces for loss of responsiveness, loss of response to surrogates of painful stimuli and laryngoscopy in patients undergoing elective surgery. Anesth. Analg. 2008, 106, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.H.; Ahn, H.J.; Kim, J.A. Interactions of propofol and remifentanil on bispectral index under 66% N(2)O: Analysis by dose-effect curve, isobologram, and combination index. Korean J. Anesthesiol. 2010, 59, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, S.E.; Xie, G.; White, J.L.; Egan, T.D. A Response Surface Analysis of Propofol–Remifentanil Pharmacodynamic Interaction in Volunteers. Anesthesiology 2004, 100, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Mertens, M.J.; Olofsen, E.; Engbers, F.H.M.; Burm, A.G.L.; Bovill, J.G.; Vuyk, J. Propofol reduces perioperative remifentanil requirements in a synergistic manner response surface modeling of perioperative remifentanil-propofol interactions. Anesthesiology 2003, 99, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Heyse, B.; Proost, J.H.; Hannivoort, L.N.; Eleveld, D.J.; Luginbühl, M.; Struys, M.M.R.F.; Vereecke, H.E.M. A response surface model approach for continuous measures of hypnotic and analgesic effect during sevoflurane-remifentanil interaction: Quantifying the pharmacodynamic shift evoked by stimulation. Anesthesiology 2014, 120, 1390–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, W.R.; Bravo, G.; Parsons, J.C. The search for synergy: A critical review from a response surface perspective. Pharmacol. Rev. 1995, 47, 331–385. [Google Scholar]
- Bol, C.J.; Vogelaar, J.P.; Tang, J.P.; Mandema, J.W. Quantification of pharmacodynamic interactions between dexmedetomidine and midazolam in the rat. J. Pharmacol. Exp. Ther. 2000, 294, 347–355. [Google Scholar]
- Miller, R.D.; Eriksson, L.I.; Fleisher, L.A.; Wiener-Kronish, J.P.; Cohen, N.H.; Young, W.L. Miller’s Anesthesia E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Schnider, T.W.; Minto, C.F.; Shafer, S.L.; Gambus, P.L.; Andresen, C.; Goodale, D.B.; Youngs, E.J. The influence of age on propofol pharmacodynamics. Anesthesiology 1999, 90, 1502–1516. [Google Scholar] [CrossRef]
- Vuyk, J.; Lim, T.; Engbers, F.H.; Burm, A.G.; Vletter, A.A.; Bovill, J.G. The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in women. Anesthesiology 1995, 83, 8–22. [Google Scholar] [CrossRef]
- Bouillon, T.; Bruhn, J.; Radu-Radulescu, L.; Bertaccini, E.; Park, S.; Shafer, S. Non-steady state analysis of the pharmacokinetic interaction between propofol and remifentanil. Anesthesiology 2002, 97, 1350–1362. [Google Scholar] [CrossRef]
- Koitabashi, T.; Johansen, J.W.; Sebel, P.S. Remifentanil dose/electroencephalogram bispectral response during combined propofol/regional anesthesia. Anesth. Analg. 2002, 94, 1530–1533. [Google Scholar] [CrossRef]
- Vinik, H.R.; Bradley, E.L.; Kissin, I., Jr. Isobolographic analysis of propofol-thiopental hypnotic interaction in surgical patients. Anesth. Analg. 1999, 88, 667–670. [Google Scholar] [PubMed]
- Nieuwenhuijs, D.J.; Olofsen, E.; Romberg, R.R.; Sarton, E.; Ward, D.; Engbers, F.; Vuyk, J.; Mooren, R.; Teppema, L.J.; Dahan, A. Response surface modeling of remifentanil-propofol interaction on cardiorespiratory control and bispectral index. Anesthesiology 2003, 98, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-Y.; Lo, M.-T.; Chen, K.-H.; Mandell, S.; Chang, W.-K.; Lin, C.; Ting, C.-K. Strong Early Phase Parasympathetic Inhibition Followed by Sympathetic Withdrawal During Propofol Induction: Temporal Response Assessed by Wavelet-Based Spectral Analysis and Photoplethysmography. Front. Physiol. 2021, 12, 705153. [Google Scholar] [CrossRef] [PubMed]
- Pomeranz, B.; Macaulay, R.J.; Caudill, M.A.; Kutz, I.; Adam, D.; Gordon, D.A.V.I.D.; Kilborn, K.M.; Barger, A.C.; Shannon, D.C.; Cohen, R.J. Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. 1985, 248, H151–H153. [Google Scholar] [CrossRef]
- Montano, N.; Ruscone, T.G.; Porta, A.; Lombardi, F.; Pagani, M.; Malliani, A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 1994, 90, 1826–1831. [Google Scholar] [CrossRef] [Green Version]
- Colombo, R.; Marchi, A.; Borghi, B.; Fossali, T.; Rech, R.; Castelli, A.; Corona, A.; Guzzetti, S.; Raimondi, F. Pulse Photoplethysmographic Analysis Estimates the Sympathetic Activity Directed to Heart and Vessels. Anesthesiology 2015, 123, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Babchenko, A.; Davidson, E.; Ginosar, Y.; Kurz, V.; Faib, I.; Adler, D.; Nitzan, M. Photoplethysmographic measurement of changes in total and pulsatile tissue blood volume, following sympathetic blockade. Physiol. Meas. 2001, 22, 389–396. [Google Scholar] [CrossRef]
- Shafer, S.L.; Varvel, J.R.; Aziz, N.; Scott, J.C. Pharmacokinetics of fentanyl administered by computer-controlled infusion pump. Anesthesiology 1990, 73, 1091–1102. [Google Scholar] [CrossRef]
- Schnider, T.W.; Minto, C.F.; Gambus, P.L.; Andresen, C.; Goodale, D.B.; Shafer, S.L.; Youngs, E.J. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 1998, 88, 1170–1182. [Google Scholar] [CrossRef]
- Chen, C.-C.; Juan, H.-H.; Tsai, M.-Y.; Lu, H.H.-S. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning. Sci. Rep. 2018, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Tai, Y.-L.; Huang, S.-J.; Chen, C.-C.; Lu, H.H.-S. Computational Complexity Reduction of Neural Networks of Brain Tumor Image Segmentation by Introducing Fermi–Dirac Correction Functions. Entropy 2021, 23, 223. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Lee, S.-I. Drug interaction: Focusing on response surface models. Korean J. Anesthesiol. 2010, 58, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Camblor, P.; Corral, N. A general bootstrap algorithm for hypothesis testing. J. Stat. Plan. Inference 2012, 142, 589–600. [Google Scholar] [CrossRef]
- Watso, J.C.; Huang, M.; Belval, L.N.; Cimino, F.A.; Jarrard, C.P.; Hendrix, J.M.; Hinojosa-Laborde, C.; Crandall, C.G. Low-dose fentanyl reduces pain perception, muscle sympathetic nerve activity responses, and blood pressure responses during the cold pressor test. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 322, R64–R76. [Google Scholar] [CrossRef]
- Hasegawa, G.; Hirata, N.; Yoshikawa, Y.; Yamakage, M. Differential effects of remimazolam and propofol on heart rate variability during anesthesia induction. J. Anesth. 2022, 36, 239–245. [Google Scholar] [CrossRef]
- Vettorello, M.; Colombo, R.; Grandis, C.E.D.; Costantini, E.; Raimondi, F. Effect of fentanyl on heart rate variability during spontaneous and paced breathing in healthy volunteers. Acta. Anaesthesiol. Scand. 2008, 52, 1064–1070. [Google Scholar] [CrossRef]
Activity | Parameters | Propofol | Fentanyl | ||
---|---|---|---|---|---|
Modeling | Sampling | Modeling | Sampling | ||
LFn | Steepness | −4.4084 | −4.4105 (0.0570) * | −2.3600 | −2.3624 (0.0275) |
Normalization factor | 5.2611 | 5.2613 (0.0307) | 1.7159 | 1.7161 (0.0184) | |
HFn | Steepness | −4.1503 | −4.1510 (0.0592) | −2.2044 | −2.2052 (0.0281) |
Normalization factor | 4.9724 | 4.9740 (0.0322) | 1.5134 | 1.5129 (0.0184) | |
LHR | Steepness | 4.0242 | 4.0220 (0.0521) | −2.3588 | −2.3409 (0.0285) |
Normalization factor | 7.0896 | 7.0899 (0.0379) | 1.4091 | 1.4075 (0.0199) | |
PPGA | Steepness | 3.5442 | 3.5432 (0.0429) | −2.0138 | −2.0371 (0.0291) |
Normalization factor | 6.5799 | 6.5787 (0.0360) | 1.2836 | 1.2795 (0.0186) |
Activity | Para- Meters | Cp | Ce (Mixture) | Ce (Group 1) | Ce (Group 2) | ||||
---|---|---|---|---|---|---|---|---|---|
Modeling | Sampling | Modeling | Sampling | Modeling | Sampling | Modeling | Sampling | ||
LFn | 1.2797 1.7051 | 1.28 (0.01) 1.70 (0.01) | −3.2024 −2.8392 | −3.20 (0.03) −2.84 (0.02) | -- * -- | −3.20 (0.03) −2.84 (0.02) | -- -- | −3.20 (0.03) −2.84 (0.02) | |
13.1206 10.3580 | 13.11 (0.15) 10.36 (0.09) | 3.9268 2.0578 | 3.93 (0.02) 2.06 (0.01) | -- -- | 3.93 (0.02) 2.06 (0.01) | -- -- | 3.93 (0.02) 2.06 (0.01) | ||
5.3293 6.4379 | 5.33 (0.06) 6.44 (0.06) | 4.2351 2.3693 | 4.23 (0.02) 2.37 (0.01) | 4.4430 2.8881 | 4.44 (0.03) 2.89 (0.01) | 4.0676 1.9515 | 4.07 (0.03) 1.95 (0.01) | ||
10.0290 | 12.19 (9.95) | −0.4678 | −0.47 (0.02) | −0.0579 | −0.06 (0.02) | −1.0517 | −1.05 (0.04) | ||
0.0693 | 0.07 (0.03) | 1.6778 | 1.68 (0.07) | 67.5643 | Inf | 0.9598 | 0.96 (0.02) | ||
HFn | 1.2892 1.5988 | 1.29 (0.01) 1.60 (0.01) | −3.2263 −2.6622 | −3.23 (0.03) −2.66 (0.03) | -- -- | −3.23 (0.03) −2.66 (0.03) | -- -- | −3.23 (0.03) −2.66 (0.02) | |
15.0960 11.8426 | 15.10 (0.19) 11.85 (0.11) | 3.7128 1.8988 | 3.71 (0.02) 1.90 (0.01) | -- -- | 3.71 (0.02) 1.90 (0.01) | -- -- | 3.71 (0.02) 1.90 (0.01) | ||
5.3293 6.4379 | 5.42 (0.06) 6.44 (0.06) | 4.2351 2.3693 | 4.22 (0.02) 2.36 (0.01) | 4.4430 2.8881 | 4.44 (0.03) 2.89 (0.01) | 4.0676 1.9515 | 4.07 (0.03) 1.95 (0.01) | ||
4.1107 | 4.13 (0.26) | −0.2176 | −0.22 (0.02) | −0.1191 | −0.12 (0.02) | −0.6847 | −0.68 (0.03) | ||
0.1660 | 0.17 (0.01) | 3.9263 | 4.02 (0.60) | 5.7335 | 6.42 (3.38) | 1.2405 | 1.24 (0.04) | ||
LHR | 1.2451 1.5897 | 1.25 (0.01) 1.47 (0.59) | 3.1158 −2.6172 | 3.12 (0.03) −2.03 (1.65) | -- -- | 3.12 (0.03) −2.02 (1.67) | -- -- | 3.12 (0.03) −2.06 (1.61) | |
14.8138 12.4434 | 14.80 (0.20) 12.11 (1.48) | 7.1478 1.8258 | 7.14 (0.04) 1.95 (0.34) | -- -- | 7.15 (0.04) 1.91 (0.30) | -- -- | 7.15 (0.04) 1.96 (0.35) | ||
5.4163 6.4236 | 5.42 (0.06) 6.42 (0.06) | 4.2173 2.3599 | 4.22 (0.02) 2.36 (0.01) | 4.3982 2.8534 | 4.40 (0.03) 2.85 (0.01) | 4.0676 1.9515 | 4.07 (0.03) 1.95 (0.01) | ||
3.6084 | 3.02 (2.47) | −0.5546 | −0.50 (0.71) | −0.8130 | −0.53 (0.73) | −0.0255 | −0.45 (1.61) | ||
0.1929 | 0.22 (0.15) | 0.6589 | 0.59 (0.15) | 0.3642 | 0.42 (0.23) | 508.7802 | Inf | ||
PPGA | −1.0789 −1.4841 | −1.08 (0.01) −1.49 (0.01) | −2.7005 2.3635 | −2.70 (0.02) 2.36 (0.02) | -- -- | −2.70 (0.02) 2.36 (0.02) | -- -- | −2.70 (0.02) 2.36 (0.02) | |
4.9809 6.5615 | 4.98 (0.07) 6.56 (0.07) | 4.6255 2.5710 | 4.62 (0.03) 2.57 (0.02) | -- -- | 4.63 (0.03) 2.57 (0.02) | -- -- | 4.63 (0.03) 2.57 (0.02) | ||
5.2263 6.5400 | 5.22 (0.06) 6.54 (0.06) | 4.1871 2.2863 | 4.19 (0.02) 2.29 (0.01) | 4.3317 2.7539 | 4.33 (0.03) 2.75 (0.01) | 4.0815 1.9444 | 4.08 (0.03) 1.94 (0.01) | ||
−0.9360 | −0.94 (0.03) | −1.2411 | −1.24 (0.03) | −1.2383 | −1.24 (0.03) | −1.3195 | −1.32 (0.05) | ||
1.0353 | 1.04 (0.02) | 0.8278 | 0.83 (0.02) | 0.9129 | 0.91 (0.01) | 0.6747 | 0.68 (0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-Y.; Liou, J.-Y.; Lin, C.; Ting, C.-K.; Chang, W.-K.; Lo, M.-T.; Chen, C.-C. Thermodynamic Interpretation of a Machine-Learning-Based Response Surface Model and Its Application to Pharmacodynamic Synergy between Propofol and Opioids. Mathematics 2022, 10, 1651. https://doi.org/10.3390/math10101651
Wang H-Y, Liou J-Y, Lin C, Ting C-K, Chang W-K, Lo M-T, Chen C-C. Thermodynamic Interpretation of a Machine-Learning-Based Response Surface Model and Its Application to Pharmacodynamic Synergy between Propofol and Opioids. Mathematics. 2022; 10(10):1651. https://doi.org/10.3390/math10101651
Chicago/Turabian StyleWang, Hsin-Yi, Jing-Yang Liou, Chen Lin, Chien-Kun Ting, Wen-Kuei Chang, Men-Tzung Lo, and Chien-Chang Chen. 2022. "Thermodynamic Interpretation of a Machine-Learning-Based Response Surface Model and Its Application to Pharmacodynamic Synergy between Propofol and Opioids" Mathematics 10, no. 10: 1651. https://doi.org/10.3390/math10101651
APA StyleWang, H.-Y., Liou, J.-Y., Lin, C., Ting, C.-K., Chang, W.-K., Lo, M.-T., & Chen, C.-C. (2022). Thermodynamic Interpretation of a Machine-Learning-Based Response Surface Model and Its Application to Pharmacodynamic Synergy between Propofol and Opioids. Mathematics, 10(10), 1651. https://doi.org/10.3390/math10101651