Heterogeneous Diffusion, Stability Analysis, and Solution Profiles for a MHD Darcy–Forchheimer Model
Abstract
:1. Introduction
2. Analysis of Existence and Uniqueness of Solutions
2.1. Primary Assessments
2.2. Existence and Uniqueness of Solutions
2.3. Uniqueness
3. Solution Profiles
Assessment of a Region with Positive Solutions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ara, A.; Khan, N.A.; Khan, H.; Sultan, F. Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially shrinking sheet. Ain-Shams Eng. J. 2014, 5, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Iqbal, Z.; Qasim, M.; Obaidat, S. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. Int. J. Heat Mass Transfer. 2012, 55, 1817–1822. [Google Scholar] [CrossRef]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Farooq, M.A.; Alsaedi, A.; Liao, S.J. On model for three-dimensional flow of nanofluid: An application to solar energy. J. Mol. Liq. 2014, 194, 41–47. [Google Scholar] [CrossRef]
- Javed, T.; Abbas, Z.; Ali, N.; Sajid, M. Flow of an Eyring–Powell non-newtonian fluid over a stretching sheet. Chem. Eng. Commun. 2013, 200, 327–336. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G. Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 2020, 22, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saif, R.S.; Muhammad, T.; Sadia, H. Significance of inclined magnetic field in Darcy–Forchheimer flow with variable porosity and thermal conductivity. Phys. A Stat. Mech. Its Appl. 2020, 551, 124067. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Khan, I.; Baleanu, D.; Nisar, K.S.; Shahzadi, G. Entropy generation and consequences of MHD in DarcyForchheimer nanofluid flow bounded by non-linearly stretching surface. Symmetry 2020, 12, 652. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, M.A.; Hayat, T. DarcyForchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet. Results Phys. 2016, 6, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Sajid, T.; Sagheer, M.; Hussain, S.; Bilal, M. Darcy–Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy. AIP Adv. 2018, 8, 035102. [Google Scholar] [CrossRef]
- Hayat, T.; Rafique, K.; Muhammad, T.; Alsaedi, A.; Ayub, M. Carbon nanotubes significance in Darcy–Forchheimer flow. Results Phys. 2018, 8, 26–33. [Google Scholar] [CrossRef]
- Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A. On Darcy–Forchheimer flow of carbon nanotubes due to a rotating disk. Int. J. Heat Mass Transf. 2017, 112, 248–254. [Google Scholar] [CrossRef]
- Saif, R.S.; Hayat, T.; Ellahi, R.; Muhammad, T.; Alsaedi, A. Darcy–Forchheimer flow of nanofluid due to a curved stretching surface. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 2–20. [Google Scholar] [CrossRef]
- Kieu, T. Existence of a solution for generalized Forchheimer flow in porous media with minimal regularity conditions. J. Math. Phys. 2020, 61, 013507. [Google Scholar] [CrossRef]
- Jawad, M.; Shah, Z.; Islam, S.; Bonyah, E.; Khan, A.Z. Darcy–Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Naviers partial slip. J. Phys. Commun. 2018, 2, 115014. [Google Scholar] [CrossRef]
- Cohen, D.; Murray, J.D. A Generalized Diffusion Model for Growth and Dispersal in a Population. J. Math. Biol. 1981, 12, 237–249. [Google Scholar] [CrossRef]
- Peletier, L.A.; Troy, W.C. Spatial Patterns. Higher order models in Physics and Mechanics. In Progress in Non Linear Differential Equations and Their Applications; Springer: Berlin/Heidelberg, Germany, 2001; Volume 45. [Google Scholar]
- Rottschäfer, V.; Doelman, A. On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation. Physica D 1998, 118, 261–292. [Google Scholar] [CrossRef] [Green Version]
- Perumpanani, J.; Sherratt, A.; Norbury, J.; Byrne, H.M. A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Physica D 1999, 126, 145–159. [Google Scholar] [CrossRef]
- Panayotis, S. Minimal heteroclinics for a class of fourth-order O.D.E. systems. Nonlinear Anal. 2018, 173, 154–163. [Google Scholar]
- Díaz Palencia, J.L. Characterization of Traveling Waves Solutions to an Heterogeneous Diffusion Coupled System with Weak Advection. Mathematics 2021, 9, 2300. [Google Scholar] [CrossRef]
- Galaktionov, V. Towards the KPP Problem and Log-Front Shift for Higher-Order Nonlinear PDEs I. Bi-Harmonic and Other Parabolic Equations. arXiv 2012, arXiv:1210.3513. [Google Scholar]
- Montaru, A. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discret. Contin. Dyn. Syst. D 2014, 19, 231–256. [Google Scholar] [CrossRef]
- Goldshtein, V.; Ukhlov, A. Weighted Sobolev Spaces and embeddings Theorems. Trans. Am. Math. Soc. 2009, 361, 3829–3850. [Google Scholar] [CrossRef] [Green Version]
- Bonheure, D.; Sanchez, L. Heteroclinics Orbits for some classes of second and fourth-order differential equations. Handb. Differ. Equ. 2006, 3, 103–202. [Google Scholar]
- Bracken, P. The quantum Hamilton–Jacobi formalism in complex space. Quantum Stud. Math. Found. 2020, 7, 389–403. [Google Scholar] [CrossRef]
- Leacock, R.A.; Padgett, M.J. Hamilton–Jacobi theory and quantum action variables. Phys. Rev. Lett. 1983, 50, 3. [Google Scholar] [CrossRef]
- Leacock, R.A.; Padgett, M.J. Hamilton–Jacobi action angle quantum mechanics. Phys. Rev. 1983, D28, 2491. [Google Scholar] [CrossRef]
- Bhalla, R.S.; Kapov, A.K.; Panigrahi, P.K. Quantum Hamilton–Jacobi formalism and its bound state spectra. Am. J. Phys. 1997, 65, 1187. [Google Scholar] [CrossRef]
- Chavez, M.; Galaktionov, V. Regional blow up for a higher-order semilinear parabolic equation. Eur. J. Appl. Math. 2001, 12, 601–623. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Williams, J. Blow-up in a fourth-order semilinear parabolic equation from explosion-convection theory. Eur. J. Appl. Math. 2004, 14, 745–764. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, J.L.; Rahman, S.; García-Haro, J.M. Heterogeneous Diffusion, Stability Analysis, and Solution Profiles for a MHD Darcy–Forchheimer Model. Mathematics 2022, 10, 20. https://doi.org/10.3390/math10010020
Díaz JL, Rahman S, García-Haro JM. Heterogeneous Diffusion, Stability Analysis, and Solution Profiles for a MHD Darcy–Forchheimer Model. Mathematics. 2022; 10(1):20. https://doi.org/10.3390/math10010020
Chicago/Turabian StyleDíaz, José Luis, Saeed Rahman, and Juan Miguel García-Haro. 2022. "Heterogeneous Diffusion, Stability Analysis, and Solution Profiles for a MHD Darcy–Forchheimer Model" Mathematics 10, no. 1: 20. https://doi.org/10.3390/math10010020
APA StyleDíaz, J. L., Rahman, S., & García-Haro, J. M. (2022). Heterogeneous Diffusion, Stability Analysis, and Solution Profiles for a MHD Darcy–Forchheimer Model. Mathematics, 10(1), 20. https://doi.org/10.3390/math10010020