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Abstract: The current article aims to present a numerical analysis of MHD Williamson nanofluid
flow maintained to flow through porous medium bounded by a non-linearly stretching flat surface.
The second law of thermodynamics was applied to analyze the fluid flow, heat and mass transport
as well as the aspects of entropy generation using Buongiorno model. Thermophoresis and
Brownian diffusion is considered which appears due to the concentration and random motion
of nanoparticles in base fluid, respectively. Uniform magnetic effect is induced but the assumption
of tiny magnetic Reynolds number results in zero magnetic induction. The governing equations
(PDEs) are transformed into ordinary differential equations (ODEs) using appropriately adjusted
transformations. The numerical method is used for solving the so-formulated highly nonlinear
problem. The graphical presentation of results highlights that the heat flux receives enhancement for
augmented Brownian diffusion. The Bejan number is found to be increasing with a larger Weissenberg
number. The tabulated results for skin-friction, Nusselt number and Sherwood number are given.
A decent agreement is noted in the results when compared with previously published literature on
Williamson nanofluids.

Keywords: Williamson nanofluid; magnetohydrodynamic; nonlinear stretching; porous medium;
entropy generation

1. Introduction

Based on their properties, over the years, the fluids have been categorized into sub-categories.
The most recent class of fluids is called nanofluids, which was introduced by Choi [1] in early 1995.
Such fluids are a colloidal mixture of metallic nano-size particles and a base fluid. The metallic
ingredients help in improvement of the thermo-physical properties of fluid under consideration.
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However, the nano-size of the particles allows us to consider the whole saturation as a fluid, called
nanofluids, that complies with the definition of non-Newtonian fluids. Since then, numerous research
articles were reported discussing different properties in different industrial, engineering, physical,
and mathematical aspects. For example, Rasool and Zhang [2] reported a steady incompressible
radiative flow of nanofluids over Riga surface. The Lorentz forces generated by the Riga plate
are active contributors to the fluid flow, heat, and mass transport in the said formulation. The
MHD stagnation point flow of nanofluids was discussed by Bai et al. [3], discussing the variation in
heat and mass transport. The model was enriched by various parameters especially the radiation
parameter that certainly effects the heat flux. Jusoh et al. [4] incorporated the bvp4c method to
solve the final governing equations of the flow model comprising of a Maxwell nanofluid flow
over a convectively heated surface. Dogonchi et al. [5] discussed MHD flow of Cu-Water nanofluid
flowing through cavity using CVFEM. Rasool et al. [6,7] reported on some interesting findings in
Marangoni convection of nanofluids involving simple as well as Riga plates with various other
important physical parameters, respectively. Some recent and interesting articles can be found in [8–26]
and cross references cited therein.

The fluid flow caused by a stretching surface has manifold applications in various industrial
and engineering setups that involve nanofluids in their production procedures. For example,
melt-spinning, glass fiber manufacturing, cooling process of metallic plates, manufacturing of rubber
bands, and plastic sheets are the well known applications of nanofluids that involve stretching surfaces.
Skiadis [27] attempted a hydromagnetic fluid flow through solid surface. Later, Crane [28] reported an
MHD flow induced by a deforming/stretching surface in two dimensions. In recent developments, one
can see many articles addressing the problems that are based on linear and nonlinear stretching rates.
Rasool et al. [29] reported a Darcy relation in nanofluids flow over nonlinearly stretching sheet/surface
resulting some interesting variations in heat and mass transport. In another article, Rasool and
Zhang [30] reported the characteristics of Darcy relation and MHD (Magnetohydrodynamics) together
with Cattaneo-Christov theory of heat and mass flux over nonlinearly stretching surface. The results
were obtained through homotopy approach. A correlation was given at the end of the study to
summarize the relative variations in heat and mass flux. Sandeep et al. [31] assessed the dusty
nanofluid flow past a stretching sheet theoretically. The characteristics of heat source/sink and inclined
MHD in nanofluid flow driven by a linear stretching surface was reported by Hayat et al. [32]. The
results were reported via the homotopy approach. Interesting curves of the thermal layer can be seen
as an outcome. Ziaei-Red et al. [33] showed the importance of permeable surface in a nanofluid flow
caused by stretching. The outcomes were in good agreement with the previous literature.

Entropy generation in mathematical models that are related with industrial and engineering
applications of nanofluids, is one of the trending aspect these days and over the years it has
received an utmost consideration in the research community. Several fluid models are available
in the literature to explain the phenomena of entropy generation in fluid flow systems. Though
the primary source of entropy generation lies in the unreversibility in the presence of low Reynolds
number but the existence of larger Reynolds is yet another undeniable fact and it has association with
hydrodynamics in the context of entropy generation. Numerous research articles have been reported
in recent years discussing the flow profiles as well as the entropy generation in the prescribed models.
For example, Afridi and Qasim [34] proposed a model comprising of nanofluid with the addition
of thermal radiation and viscous dissipation by a moving needle discussing the entropy generation.
Lopez et al. [35] reported a radiative flow past a vertical porous micro-channel. The velocity slip and
entropy generation were given due emphasis. The involved nanofluid was supposed to be a mixture
of aluminum and water as base fluid. As a result, entropy generation showed certain increments
for augmented Buyoncy and radiative heat but a declination is noticed towards volume fraction of
nano-particles and suction/injection. Characteristics of EMHD and entropy generation in a curvy
micro-channel was reported by Liu et al. [36]. The numerical results have shown that the strength
of magnetic field is an important factor together with intensity of electric field, cross section ratio,
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curvature ratio, and viscous dissipation. The results show that local entropy generation is a decreasing
function with an away movement from surface. However, higher viscous dissipation is an increasing
factor for the said phenomena. In their study, Wang et al. [37] reported an entropy generation of a
heater with different operating factors. The second law of thermodynamics was used to analyze the
dynamics of the heater. Via transient process, the results indicate that the entropy generation decreases.
An important study was reported by Sonia et al. [38] for analysis of entropy generation in a fluid
flow that gains momentum in a natural way bounded by a semi-annular enclosure. Four types of
nano-particles namely copper, silver, copper oxide and gold have been involved to saturate the given
base fluid. The Maxwell–Garnetts model and Brinkman model have been used to calculate the effective
conductivity (thermal) and viscosity of the nanofluid. Reportedly, the larger Rayleigh number results
in enhancement of entropy generation. Sumaira et al. [39] reported the prospects of entropy generation
in Williamson nanofluids incorporating a model involving two rotating disks. Entropy generation
is calculated through second law of thermodynamics. In their study, Khan et al. [40] discussed the
entropy generation in Williamson nanofluids through porous medium with linear stretching, and
joule heating. Vatanmakan et al. [41] reported a volumetric heating and entropy generation in a
flow modeled through turbine. SST k-w relation and Eulerian description were used to simulate the
problem numerically. The results were in agreement with the experimental data. The drag force is
found decreasing when volumetric heating is implemented. Recently, Zhang et al. [42] has reported
a convection of paramagnetic fluid involving the concept of thermo-magnetic. The entropy generation
was discussed in a porous enclosure. Results are achieved through the Boltzman numerical method.
The larger Reynolds is taken into account. The non-gravitational condition results in enhancement of
mass flux and reduction of Bejan number.

Pseudo-plastic materials have extensive demand in the industry for their special properties.
The wide use of such materials ranges in photographic films, melts and solutions of polymers with
larger molecular weights, suspensions, expulsion of sheets, etc. Various models were proposed in the
literature to discuss such kind of fluid flow but the complex nature of rheological systems limits the
sufficiency of the Navier stokes equations. Models, such as those by Carreau, Cross, Ellis, and the
power law model were reported in the literature to discuss the characteristics of such Pseudo-plastic
materials. However, models such as the Powell–Eyring model and the Williamson model are worthy to
cover the deficiency in the original Navier Stokes equations. Williamson [43] reported an experimental
study supplemented by a model, named after him as Williamson model, for the above mentioned
complex Pseudo-plastic materials. Later on, numerous studies were reported following the model
proposed by Williamson with some fruitful results. Blasius [44] discussed the properties of momentum
boundary layer formulated in the fluid flow over a flat surface. The concepts of Blasius [44] and
Sakiadis [27] were combined with Williamson fluid by Ramesh et al. [45] using convective boundary
conditions. The results were obtained through Homotopy. Khan et al. [46] reported an interesting
study on Williamson nanofluid flow past a cone. The special case was discussed with plate as well.
The study revealed that temperature profile reduces for larger values of Prandtl but a reduction is
noticed towards a stronger thermophoretic force. Hayat et al. [47] reported an MHD analysis of
Williamson fluid over nonlinear variable surface. Nadeem et al. [48] reported the fluid flow, heat, and
mass transport mechanism over a stretching surface where the subject fluid was taken as Williamson
fluid. Salahuddin et al. [49] reported flow of Williamson fluid over stretching surface using the theory
of Cattaneo–Christov for heat and mass transfer developments. Whereas Soret and Dufour effects
on Williamson fluid flow was reported by Hayat et al. [50] using convective conditions. The results
indicate that thermal as well as solute Biot numbers are increasing factors for temperature field.

Inspired by the above literature, we targeted the aspects of binary chemical reaction, Arrhenius
activation energy and the entropy generation in magnetohydrodynamic Darcy flow of Williamson
nanofluid. The Brownian diffusion due to random motion of nanoparticles and the Thermophoresis
phenomena are present due to the saturation of metallic nanoparticles. The medium is maintained
over an infinite nonlinearly stretching surface along the x-axis. Numerical simulation of the problem
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gives graphical results that are plotted accordingly. Various interesting aspects of fluid flow, heat, and
mass transport mechanism, the wall drag intensity and the entropy generation were analyzed on the
basis of numerical data. The results are compared with previous literature on Williamson nanofluids.

2. Problem Formulation

Here we consider an incompressible, viscous and chemically reactive MHD Williamson nano-fluid
flow maintained to flow through porous medium bounded by a non-linearly stretching surface in
two dimensions (xy-coordinates). A binary chemical reaction with Arrhenius activation energy is
considered. Uniform magnetic effect is induced but the assumption of tiny magnetic Reynolds
number results in zero magnetic induction. The fluid flows alongside the x-axis given the velocity
component u whereas no-displacement is taken alongside y-axis given the velocity component v.
The sheet spreads nonlinearly along the positive x-axis with velocity u = uw = b·xn where n > 1
represents the non-linearity in stretching and n = 1 stands for the linear case. b is taken to be positive.
Thermophoresis and Brownian diffusion is considered which appears due to the concentration of
nanoparticles in base fluid as well as the random motion of the nanoparticles, respectively. A physical
diagram of the flow model can be seen in Figure 1.

Figure 1. Physical diagram of the flow model.

The modeled problem resembles the following governing equations (see for example
Khan et al. [40]),
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subject to following boundary conditions,

u = uw(x) = bxn, T = Tw, C = Cw, v = 0, at y = 0, (5)

u→ 0, C → C∞, T → T∞ at y→ ∞. (6)

where ν
(
= µ/ρ f l

)
and µ are kinematic and dynamic viscosity of the base fluid, respectively, ρ f l

is the given name of density of the base fluid, T, C stand for temperature field and concentration
of nanoparticles, σ is designated symbol of electric conductivity, α f l = k/(ρc) f l stands for thermal
diffusivity, DB is given symbol for Brownian diffusion, τ is used as the given ratio of heat capacity of
(fluid) (ρc) f l to the heat capacity of (nanoparticles) (ρc)np, T∞, C∞ are the typical ambient temperature
field and concentration of nanoparticles, respectively. DT is given symbol of thermophoretic force.
The uniformly induced magnetic field is given by B0, n1 is fitted strictly positive rate constant, E is
used for activation energy and Kr stands for binary chemical reaction. Cb√

K
= F is called the coefficient

of inertia for the given porous medium. This term appears due to the drag force offered by the medium
to fluid flow. Following Hayat et al. [11] define,

v = −
√

bν(n+1)
2 x

n−1
2

(
f (η) + n−1

n+1 η f ′(η)
)

, u = bxn f ′(η),
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, θ(η) = T−T∞
Tf l−T∞

,
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√

b(n+1)
2ν x

n−1
2 y.

 (7)

By virtue of transformations, the final ODEs are given below,
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(8)
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(
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2
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1Ec f ′2 = 0, (9)
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such that,
f = 0, f ′ = 1, θ = 1, φ = 1, at η = 0, (11)

f ′ → 0, φ→ 0, θ → 0 as η → ∞. (12)

Here W1 is Weissenberg number, Pr is known for Prandtl, M1 is known for magnetic field, Fr is
used for inertial force, λ is treated as porosity factor, Nt is Thermophoresis whereas Nb is Brownian
diffusion, Sc is Schmidt factor, KR is chemical reaction, E1 is the activation energy. Ec is used as a symbol
for Eckert number. Prime ”′” denotes differentiation regarding η. The dimensionless expressions are,
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√
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.
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3. Mathematical Modeling for Entropy Generation

The governing Entropy equation for the modeled problem can be formulated as followed, (see for
example Wang et al. [37], Qayyum et al. [39] and Khan et al. [40]),

EG =
k

T2
∞

(
∂T
∂y

)2
+

σ

T∞
B2

0u2 +
RDB

T∞
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+
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∂u
∂y

)2
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(
∂u
∂y

)3
)
+
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(
1

ρ f lK
u2

)
.

(14)

Equation (7) in Equation (14) yields the following non-dimensional form:
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2

)
θ′

2
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(
n + 1

2
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f ′′2 + Br1

(
n + 1

2

)
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2
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2
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2
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2
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2

)
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(15)

where

NG =
EGT∞ν

xn−1k (Tw − T∞) b
, β1 =

Tw − T∞

T∞
,

β2 =
Cw − C∞

C∞
, Br1 =

µ0b2x2n

k (Tw − T∞)
,

L1 =
RDB

k
(Cw − C∞) ,

(16)

are the entropy generation rate, temperature difference parameter, concentration difference parameter,
Brinkman number, diffusion parameter, respectively.

4. Expressions for Physical Quantities

Wall drag and relevant flux numbers (Nusselt, Sherwood) are defined as follows,

Re1/2
x C f x =

(√
n+1√

2

) (
f ′′(0)−W1 f ′′

3
(0)
)

,

Re−1/2
x Nux = −

√
n+1√

2
θ′(0),

Re−1/2
x Shx = −

√
n+1√

2
φ′(0),

 (17)

where Rex = bxn+1/ν is local Reynolds.

5. Numerical Solution of the Problem

The nonlinear problems (8–12) and (15) subject to the given boundary conditions formulate
two-point BVPs. The system is solved through numerical shooting technique, transforming the BVPs
into initial value problems (IVPs) first. The following procedure is adopted in this transformation.
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5.1. The Governing Equations

The governing equations are, therefore, written as follows,

f = f ,

∂ f
∂η

= f ′ = g,

∂2 f
∂η2 = f ′′ = g′ = h,

∂3 f
∂η3 = f ′′′ = g′′ = h′ =

(
2n

n + 1

)
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(
n + 1

2

)
W1hh′ +

(
2n

n + 1

)
Frg2 +

(
2

n + 1

)
M2

1g + λ

(
2

n + 1

)
g,
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∂θ

∂η
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φ = φ,

∂φ

∂η
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∂2θ
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[
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]
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2
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2

(
n + 1

2
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∂2φ

∂η2 = φ′′ = t′ = ScKRNb (1 + σ1θ)n exp
(
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1 + θσ1

)
φ− Sct f − Nt

Nb
s′.

(18)

Such that,

f = 0, g = 1, φ = θ = 1, η → 0,

g→ 0, φ→ 0, θ → 0, η → ∞.
(19)

5.2. Entropy Generation

Following the same procedure as above, the entropy equation is given as follows,

NG = β1

(
n + 1

2

)
s2 + Br1

(
n + 1

2

)
h2 + Br1

(
n + 1

2

)
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(
n + 1

2

)
Br1g2

+ L1

(
n + 1

2
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2
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st + Br1λ

(
n + 1

2

)
g2,

(20)

5.3. Physical Quantities

The physical quantities i.e. Skin-friction, Nusselt and Sherwood numbers used in the numerical
scheme are given below,

Re1/2
x C f x =

(√
n+1√

2

) (
h2 −W1h3(0)

)
, η → 0,

Re−1/2
x Nux = −

√
n+1√

2
s, η → 0,

Re−1/2
x Shx = −

√
n+1√

2
t, η → 0.

 (21)

A careful selection of initial guesses is made to repeatedly solve the given IVPs using fourth order
RK-method. Secant method is implemented to adjust the values of aforementioned three quantities for
better approximation. A convergence criteria based on the difference of previous to current iteration
is employed. For a difference equal or less than 10−5, the solution is treated convergent, thus the
iterations are terminated thereafter.
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6. Results and Discussion

6.1. Wall Drag Force, Heat Flux Rate and Mass Flux Rate

Velocity field, temperature distribution, concentration of nanoparticles, and entropy generation
rate are described physically here in this section. A numerical scheme is applied to achieve the final
solutions that are sufficient to depict the behavior of flow profiles. In Table 1, we organized the data
obtained upon fluctuation of the values of various parameters such as porosity factor, magnetic
parameter and Weissenberg number. We see an enhancement in the drag force for augmented
values of Magnetic parameter whereas a decrement can be seen for Weissenberg number. In Table 2,
we organized the data collected upon numerical simulation of the problem for local Nusselt and local
Sherwood numbers. One can see that Brownian diffusion results in decay of heat transfer rate whereas,
the variation in Prandtl number results in enhancement of the heat transfer rate. The mass flux rate
enhances for augmented values of chemical reaction but decays for the Arrhenius activation energy
parameter. The full data tables are very handy in industrial applications of nanofluids. The involvement
of Darcy medium significantly reduces the fluid movement. It affects the heat and mass transport
mechanism due to inertial force and porosity factor. The drag force increases due to the resistive
nature of medium (porous medium). Table 3 gives a comparison on skin-friction data with previously
published data. Table 4 is organized on the comparison of Nusselt data with Khan et al. [40].

Table 1. Skin friction at n = 2 and n1 = 0.5.

W1 M1 Fr λ −C f

0.0 0.2 0.5 0.5 3.73592
0.2 3.06156
0.4 2.48776

0.2 0.0 0.5 0.5 3.02498
0.2 3.06156
0.4 3.31165

0.2 0.2 0.0 0.5 2.4912
0.5 3.06156
1.0 3.39709

0.2 0.2 0.5 0.0 2.61406
0.5 3.06156
1.0 4.13067

Table 2. Nusselt number (heat flux rate) and Sherwood number (mass flux rate) at n = 2, n1 = 0.5.

W1 M1 Fr λ Pr Nt Nb Sc KR σ1 E Nusselt Sherwood

0.0 0.2 0.5 0.5 1.0 1.0 0.3 1.0 0.5 0.3 0.5 0.36517 0.726346
0.2 0.348383 0.742882
0.4 0.260131 0.829416

0.2 0.0 0.5 0.5 1.0 1.0 0.3 1.0 0.5 0.3 0.5 0.350179 0.741453
0.2 0.348383 0.742882
0.4 0.305662 0.788401

0.2 0.2 0.0 0.5 1.0 1.0 0.3 1.0 0.5 0.3 0.5 0.36404 0.727939
0.5 0.348383 0.742882
1.0 0.326917 0.765154

0.2 0.2 0.5 0.0 1.0 1.0 0.3 1.0 0.5 0.3 0.5 0.372632 0.72538
0.5 0.348383 0.742882
1.0 0.125845 0.867449

0.2 0.2 0.5 0.5 0.5 1.0 0.3 1.0 0.5 0.3 0.5 0.265106 0.835514
1.0 0.348383 0.742882
1.5 0.38281 0.728116
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Table 2. Cont.

W1 M1 Fr λ Pr Nt Nb Sc KR σ1 E Nusselt Sherwood

0.2 0.2 0.5 0.5 1.0 0.5 0.3 1.0 0.5 0.3 0.5 0.42002 0.719649
1.0 0.348383 0.742882
1.5 0.291001 0.793598

0.2 0.2 0.5 0.5 1.0 1.0 0.1 1.0 0.5 0.3 0.5 0.360205 0.0817931
0.3 0.348383 0.742882
0.6 0.285437 0.950296

0.2 0.2 0.5 0.5 1.0 1.0 0.3 0.5 0.5 0.3 0.5 0.376174 0.214407
1.0 0.348383 0.742882
1.5 0.335178 1.1016

0.2 0.2 0.5 0.5 1.0 1.0 0.3 1.0 0.1 0.3 0.5 0.379041 0.0418443
0.3 0.359585 0.463542
0.5 0.348383 0.742882

0.2 0.2 0.5 0.5 1.0 1.0 0.3 1.0 0.5 0.1 0.5 0.349899 0.684649
0.4 0.347684 0.769771
0.8 0.3452 0.865346

0.2 0.2 0.5 0.5 1.0 1.0 0.3 1.0 0.5 0.3 0.1 0.340539 0.951321
0.3 0.34442 0.845375
0.6 0.350381 0.693057

Table 3. Comparison of Skin-friction with Khan et al. [40].

W1 M1 Present Khan et al. [40]

0.1 0.1 2.05600 2.05608
0.2 2.01100 2.01101
0.3 1.96121 1.96124

0.1 0.2 2.14588 2.14587
0.3 2.23184 2.23184

Table 4. Comparison of Nusselt number with Khan et al. [40].

Nb Pr Present Khan et al. [40]

0.1 1.0 0.4700 0.4701
0.2 0.4411 0.4410
0.3 0.4134 0.4135

0.1 1.1 0.4966 0.4965
1.2 0.5217 0.5216

6.2. Stream Functions

The stream functions for the given flow model are plotted in Figures 2 and 3. In Figure 2, the linear
case of stretching is considered whereas, in Figure 3, the stretching is assumed to be nonlinear. In both
the figures, a slight variation is noted in the stream curves. Smooth curves are noticed for linear
case whereas, in nonlinear case the curves spread more from the origin compared to far away from
the origin.
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Figure 2. Stream functions at n = 1.
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Figure 3. Stream functions at n = 2.

6.3. Velocity Field

We analyzed the velocity field for three parameters i.e., Weissenberg number, Inertial force
parameter and porosity factor. One can see that the velocity field is decaying in the whole domain
i.e., [0.0, 0.40] for the above mentioned three parameters. The inverse relation of these parameters with
momentum equation is justified. For Weissenberg number we justify our graphical explanation given
in Figure 4 with an argument that Weissenberg number is related with analyzing the viscoelastic flows
where the role of relaxation time parameters is effective. Greater values of Weissenberg numbers are
linked with more relaxation time which creates more resistance period for fluid motion. For inertial
force parameter (see Figure 5), the sudden bumps in the way of fluid flow are the reasons for reducing



Entropy 2020, 22, 18 11 of 21

the fluid motion. This is due to the resistive force active in the direction normal to the fluid flow.
The porosity factor itself justifies the reduction in fluid motion (see Figure 6) due to its relation with
frictional force and intensive drag force. The greater the porosity factor, the greater the friction and
less motion of the fluid is expected.

        M1 =  0.3, n = 2,  Fr =  0.3,  Λ = 1.3,  

W1 = 0.0, 0.17, 0.31, 0.39

1 2 3 4
Η

0.2

0.4

0.6

0.8

1.0

f 'HΗL

Figure 4. Influence of W1 on velocity field.

   M1 =  0.3, n = 1.5, W1 =  0.2,  Λ = 0.2,  

Fr = 0.0, 0.5, 1.0, 1.6

1 2 3 4
Η

0.2

0.4

0.6

0.8

1.0

f 'HΗL

Figure 5. Influence of Fr on velocity field.

Λ = 0.0, 0.15, 0.25, 0.35

   M1 =  0.3, n = 1.5, W1 =  0.2,  Fr = 0.5,  

1 2 3 4 5
Η

0.2

0.4

0.6

0.8

1.0

f 'HΗL

Figure 6. Influence of λ on velocity field.
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6.4. Temperature Distribution

From Figures 7–10, the results are related to variation in temperature distribution for augmented
values of porosity factor, Inertial force parameter, Thermophoresis, and Brownian diffusion.
In particular, Figure 7 gives the graphical description of the influence of augmented values of λ

on temperature distribution. The more intensive porosity factor results in more effective resistive force
active on the way of fluid motion. This resistive force is the reason behind incremental trend in thermal
profile and enhancement of the thickness of associated boundary layer. The variation in thermal
profile due to Forchheimer number (inertial force parameter) is given in Figure 8. Clearly the more
stronger inertial force results in more thermal distribution and the associated boundary layer thickness
receives increment. Physically, the stronger inertial force is due to the intensive drag force coefficient
“Cb”. For higher values of Cb i.e.,

(
Cb√

K
= F

)
, stronger inertial force is effective within the model that

enhances the collisions of fluid packets and rises the temperature field. Figures 9 and 10 are the
display of variation noted in thermal distribution due to the Thermophoresis and Brownian diffusion.
Both the parameters are enhancing factors for the thermal layer. The reason behind this enhancement
in temperature profile is the in-predictive motion of nanoparticles due to Brownian diffusion. The more
intensive the thermophoretic force, the more abrupt the diffusion of the particles and this causes an
increase in the thermal profile and associated boundary layer thickness receives increment.

   M1 =  0.1, n = 1.5, W1 =  0.4,  Fr = 0.3, Nt = 1.0, Nb = 0.3, Pr = 1.5, KR = 0.5, 

    Σ1 = 0.3,  Sc = 1.0,  E = 0.5, n1 = 0.5,     

Λ = 0.0, 0.15, 0.25, 0.35

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

Θ HΗL

Figure 7. Influence of λ on temperature field.

   M1 =  0.1, n = 1.5, W1 =  0.4,  Λ = 0.3, Nt = 1.0, Nb = 0.3, Pr = 1.5, KR = 0.5, 

    Σ1 = 0.3,  Sc = 1.0,  E = 0.5, n1 = 0.5,     

 Fr = 0.0, 0.2, 0.4, 0.6

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

Θ HΗL

Figure 8. Influence of Fr on temperature field.
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   M1 =  0.1, n = 1.5, W1 =  0.4,  Λ = 0.3, Fr = 0.5, Nb = 0.3, Pr = 1.5, KR = 0.5, 

    Σ1 = 0.3,  Sc = 1.0,  E = 0.5, n1 = 0.5,     

 Nt = 0.8, 1.0, 1.2, 1.4
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Figure 9. Influence of Nt on temperature field.

   M1 =  0.1, n = 1.5, W1 =  0.4,  Λ = 0.3, Fr = 0.5, Nt = 1.0, Pr = 1.5, KR = 0.5, 

    Σ1 = 0.3,  Sc = 1.0,  E = 0.5, n1 = 0.5,     

 Nb = 0.2, 0.35, 0.6, 0.8

1 2 3 4 5 6
Η
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1.0

Θ HΗL

Figure 10. Influence of Nb on temperature field.

6.5. Concentration Distribution

Here in this subsection we discuss the variations noted in concentration of the nanoparticles
for various values of Brownian diffusion parameter, Thermophoresis parameter, Schmidt number,
Chemical reaction, and Arrhenius activation energy parameter. The results are plotted graphically
in Figures 11–15. In particular, Figure 11 is the display of the impact of Brownian diffusion on
concentration of the nanoparticles. In the whole domain i.e., [0.0, 0.50], the concentration of
nanoparticles shows reduction for higher values of Nb whereas, opposite behavior is noticed in
concentration of nanoparticles with higher values of Nt. In the domain fixed for Schmidt number
i.e., [0.0, 3.0], the concentration field increases. Mathematically, Schmidt factor is treated as a
non-dimensional number relating mass diffusivity with momentum diffusivity yielding a fluid flow
display. These two terms are physically called the mass transport layer and hydrodynamic thickness
layer. For an enhancement in the Schmidt factor, the mass diffusion drops down which results in
decrement in concentration field. The influence of chemical reaction and Arrhenius activation energy
parameters is given in Figures 14 and 15. For stronger chemical reaction, a destructive outcome is noted
which decomposes the reactant species. Thus, the associated boundary layer reduces for augmented
chemical reaction. An opposite trend is noted in case of Activation energy. Figures 16 and 17 are the
contour graphs at n = 1 and n = 2, respectively. Near the origin, the variation is less as compared to
the free surface.
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   M1 =  0.1, n = 1.5, W1 =  0.4,  Λ = 0.1, Fr = 0.5, Nt = 0.3, Pr = 1.5, KR = 0.4, 
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Figure 11. Influence of Nb on concentration field.

   M1 =  0.1, n = 1.5, W1 =  0.4,  Λ = 0.1, Fr = 0.5, Nb = 0.2, Pr = 1.5, KR = 0.4, 

    Σ1 = 0.3,  Sc = 2.0,  E = 0.5, n1 = 0.5,     

 Nt = 0.1, 0.20, 0.26, 0.36
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Figure 12. Influence of Nt on concentration field.

   M1 =  0.1, n = 1.5, W1 =  0.4,  Λ = 0.1, Fr = 0.5, Nb = 0.2, Pr = 1.5, KR = 0.4, 

    Σ1 = 0.3,  Nt = 0.3,  E = 0.5, n1 = 0.5,     

 Sc = 1.8, 2.0, 2.2, 2.5
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Figure 13. Influence of Sc on concentration field.
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Figure 14. Influence of KR on concentration field.

   M1 =  0.1, n = 1.5, W1 =  0.4,  Λ = 0.1, Fr = 0.5, Nb = 0.2, Pr = 1.5, Sc = 2.0, 
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Figure 15. Influence of E on concentration field.
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Figure 16. IG at n = 1.
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Figure 17. IG at n = 2.

6.6. Entropy Generation

The graphs plotted in Figures 18–20 reflect the variations noted in Be for various values of β1,
β2 and W1 one by one. For augmented values of both the temperature difference parameter β1 and
β2 we observe an enhancement in the respective magnitude of Be as displayed in Figures 18 and 19.
Figure 20 gives an explanation for the variation in Be with respect to the Weissenberg number (W1).
A clear enhancement can be seen in the interval [0.0, 0.40] for the Weissenberg number.

 Β2 = 0.0, 0.2, 0.4, 0.6

   M1 =  0.1, n = 1.2, Fr =  0.5,  Λ = 0.3, Nt = 1.0, Nb = 0.3, Pr = 1.5, KR = 0.5, 

    Σ1 = 0.3,  Sc = 1.0,  E = 0.5, n1 = 0.5, W1 = 0.2, Β1 = 0.7, L1 = 0.5, Br1
 = 0.6,    

1 2 3 4
Η

0.2

0.4

0.6

0.8
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Figure 18. Be versus β2.
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   M1 =  0.1, n = 1.2, Fr =  0.5,  Λ = 0.3, Nt = 1.0, Nb = 0.3, Pr = 1.5, KR = 0.5, 
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Figure 19. Be versus β1.
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Figure 20. Be versus W1.

7. Conclusions

We considered an incompressible, viscous MHD Williamson nanofluid flow maintained to
flow through porous medium bounded by a non-linearly stretching surface in two dimensions
(xy-coordinates). A binary chemical reaction with Arrhenius activation energy is considered. Uniform
magnetic effect is induced but the assumption of tiny magnetic Reynolds number results in zero
magnetic induction. The governing equations are transformed into Ordinary equations. The nonlinear
problems (8–12) and (15) subject to the given boundary conditions formulate two-point BVPs.
The system is solved through numerical shooting technique, transforming the BVPs into initial value
problems (IVPs) first. Herein, we calculated the entropy generation rate with a comprehensive analysis
of the heat and mass transport mechanism, the wall drag intensity and the variation in flow profiles
for various fluid parameters. Following the model given by Buongiorno, the modeling is done for a
physical situation assumed under certain conditions. The salient features of this study are listed below:

• An enhancement in the drag force for augmented values of Magnetic parameter is noticed whereas
a decrement can be seen for the Weissenberg number. The resistive Lorentz force active normal to
the fluid flow is responsible for this behavior.
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• The Brownian diffusion results in decay of heat transfer rate whereas, the variation in Prandtl
number results in enhancement of the heat transfer rate.

• The mass flux rate enhances for augmented values of chemical reaction but decays for the
Arrhenius activation energy parameter.

• For the stream functions, we see that smooth curves are produced for linear case whereas,
in nonlinear case the curves spread more from the origin.

• Greater values of Weissenberg numbers are linked with more relaxation time which creates more
resistance period for fluid motion.

• The more stronger inertial force results in more thermal distribution and the associated boundary
layer thickness receives increment.

• In the whole domain i.e., [0.0, 0.50], the concentration of nanoparticles shows reduction for higher
values of Nb whereas, opposite behavior is noticed in concentration of nanoparticles with higher
values of Nt.

• Schmidt factor is treated as a non-dimensional number relating mass diffusivity with momentum
diffusivity yielding a fluid flow display. These two terms are physically called the mass transport
layer and hydrodynamic thickness layer. For an enhancement in the Schmidt number, mass
diffusion drops down which results in a decrement in the concentration field.
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Abbreviations

The following abbreviations are used in this manuscript:

MHD Magnetohydrodynamics
RK− 45 Runge-Kutta 45 Method
ODE Ordinary Differential Equation
PDE Partial Differential Equation
u, v Horizontal and vertical velocity components/m·s−1

x, y Cartesian coordinates/m
uw = bxn Stretching velocity/m·s−1

µ Dynamic viscosity/Pa·s
b Stretching rate/s−1

ν Kinematic viscosity/m2·s−1

B0 Applied magnetic field intensity/A·m−1

k Thermal conductivity/W·m−1·K−1

ρ f l Density/kg·m−3

DB Brownian diffusion
DT Thermophoresis
T, T∞, Tw, Tf l Temperature distributions at various locations/K
C, C∞, Cw, C f l Concentration distributions at various locations/kg·m−3

σ Electric conductivity of the fluid/(Ω m)−1

(ρc)p Nanoparticles’ productive heat capacity/J·m−3·k−1

(ρc) f l Fluid’s productive heat capacity/J·m−3·k−1

M Magnetic parameter
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Cb Drag force coefficient
K Permeability of the porous medium
τ Ratio of heat capacity of fluid and nanoparticles
Kr Binary chemical reaction
E Activation energy
Dimensionless Parameters:
Sc Schmidt number
Pr Prandtl number
Nt Thermophoresis
Nb Brownian diffusion
Nux Nusselt factor (Heat flux parameter)
Shx Sherwood factor (Mass flux parameter)
W1 Weissenberg number
NG Entropy generation rate
β1 Temperature difference parameter
β2 Concentration difference parameter
Br1 Brinkman number
L1 Diffusion parameter
Fr Inertial force parameter
KR Binary chemical reaction parameter
E1 Activation energy parameter
EG Entropy generation
λ Porosity factor
η Variable
f ′ Velocity
θ Temperature
φ Concentration
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