Next Article in Journal
Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis
Next Article in Special Issue
Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants
Previous Article in Journal
Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review
Open AccessReview

Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

Southern Cross Plant Sciences, Southern Cross University, Lismore 2481, NSW, Australia
Academic Editors: M. Margarida Oliveira, Isabel A. Abreu and Jacek R. Wisniewski
Proteomes 2016, 4(3), 26; https://doi.org/10.3390/proteomes4030026
Received: 21 June 2016 / Revised: 1 September 2016 / Accepted: 3 September 2016 / Published: 8 September 2016
(This article belongs to the Special Issue Proteomics in Plant–Environment Interactions)
Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised. View Full-Text
Keywords: proteomics; biomarkers; abiotic stress; genetic diversity; crop improvement proteomics; biomarkers; abiotic stress; genetic diversity; crop improvement
Show Figures

Graphical abstract

MDPI and ACS Style

Barkla, B.J. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity. Proteomes 2016, 4, 26.

AMA Style

Barkla BJ. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity. Proteomes. 2016; 4(3):26.

Chicago/Turabian Style

Barkla, Bronwyn J. 2016. "Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity" Proteomes 4, no. 3: 26.

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop