Proteome Changes Induced by Imatinib and Novel Imatinib Derivatives in K562 Human Chronic Myeloid Leukemia Cells
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Cell Culture
2.3. SILAC Medium
2.4. Drug Treatment
2.5. Proteome Analysis
3. Results and Discussion
Study | Biological Sample | Spectra | Identifications FDR | Unique Peptides | Unique Proteins | Common Proteins | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1+2 | ||
K562 water/K562 DMSO | 56,140 | - | 13,584 0.08% | 3437 | 902 | |||||
K562/K562 Imatinib | 51,261 | 62,478 | 11,138 0.116% | 13,740 0.116% | 3530 | 3636 | 834 | 874 | 798 | |
K562/K562 SK23 | 56,763 | 63,385 | 13,524 0.064% | 13,733 0.094% | 3625 | 3456 | 878 | 844 | 697 | |
K562/K562 SK20 | 50,833 | 65,130 | 12,882 0.085% | 14,682 0.108% | 3286 | 3703 | 831 | 854 | 671 | |
K562/K562 SK16 | 53,993 | 64,528 | 13,433 0.089% | 14,095 0.127% | 3277 | 3528 | 841 | 858 | 676 | |
K562/K562 Y18 | 50,399 | 64,564 | 12,593 0.103% | 14,759 0.074% | 3084 | 3656 | 796 | 855 | 645 | |
K562 Imatinib/ K562 SK23 | 56,398 | 50,906 | 14,958 0.06% | 11,105 0.098% | 4345 | 3168 | 980 | 846 | 846 | |
K562 Imatinib/ K562 SK20 | 53,377 | 52,531 | 14,376 0.097% | 12,456 0.104% | 4167 | 3497 | 912 | 848 | 834 | |
K562 Imatinib/ K562 SK16 | 58,970 | 52,426 | 15,278 0.071% | 12,172 0.073% | 4167 | 3530 | 934 | 868 | 852 | |
K562 Imatinib/ K562 Y18 | 58,311 | 53,522 | 15,410 0.038% | 11,584 0.103% | 4186 | 3442 | 922 | 865 | 853 |
3.1. SILAC Proteome Analyses of K562 Cells Treated with Imatinib or Imatinib Derivatives
Accession | Protein Name | Localization | SK23 | SK16 | SK20 | Y18 | Imatinib |
---|---|---|---|---|---|---|---|
Amino acid biosynthesis | |||||||
O43175 | D-3-phosphoglycerate dehydrogenase | cytoplasm | + | + | + | ↑ | + |
Apoptosis-cell cycle | |||||||
P61289 | Proteasome activator complex subunit 3 | nucleus | − | − | − | ↓ | − |
Q00526 | Cyclin-dependent kinase 3 | cytoplasm | ↑ | − | + | + | − |
Q92688 | Acidic leucine-rich nuclear phosphoprotein 32 family member B | cytoplasm | ↓ | + | + | + | + |
DNA and RNA related proteins | |||||||
Q16630 | Cleavage and polyadenylation specificity factor subunit 6 | nucleus | + | + | + | ↓ | + |
P22087 | rRNA 2'-O-methyltransferase fibrillarin | nucleus | + | + | + | ↓ | + |
Q9NR30 | Nucleolar RNA helicase 2 | nucleus | ↑ | + | + | ↓ | + |
Q08211 | ATP-dependent RNA helicase A | cytoplasm | + | + | + | ↓ | + |
Other | |||||||
P62714 | Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform | centromere | ↓ | + | + | + | + |
P09622 | Dihydrolipoyl dehydrogenase, | mitochondrion | + | + | ↑ | ↑ | + |
Q96EP5 | DAZ-associated protein 1 | cytoplasm | + | + | + | ↓ | + |
P13646 | Keratin, type I cytoskeletal 13 | intermediate filament | ↓ | − | − | − | − |
P49327 | Fatty acid synthase | cytoplasm | + | + | ↓ | ↓ | + |
P07237 | Protein disulfide-isomerase | cell memb. | ↑ | + | ↑ | ↑ | + |
P49915 | GMP synthase [glutamine-hydrolyzing] | cytoplasm | + | + | + | ↓ | + |
Host-virus interaction | |||||||
O00571 | ATP-dependent RNA helicase DDX3X | cytoplasm | ↑ | ↑ | ↑ | ↑ | ↑ |
Q13435 | Splicing factor 3B subunit 2 | nucleus | ↑ | + | + | + | + |
Protein biosynthesis | |||||||
Q15084 | Protein disulfide-isomerase A6 | cell memb. | + | + | ↑ | + | + |
P41567 | Eukaryotic translation initiation factor 1 | cytoplasm | ↑ | + | ↑ | ↑ | + |
O60739 | Eukaryotic translation initiation factor 1b | unknown | ↓ | + | ↓ | + | + |
Signal transduction | |||||||
P49006 | MARCKS-related protein | cell memb. | ↑ | + | + | + | ↑ |
P30101 | Protein disulfide-isomerase A3 | en reticulum | + | + | ↑ | + | + |
Stress response | |||||||
Q14011 | Cold-inducible RNA-binding protein | cytoplasm | + | ↑ | + | ↑ | + |
P98179 | Putative RNA-binding protein 3 | cytoplasm | − | ↑ | − | ↑ | − |
Q9Y4L1 | Hypoxia up-regulated protein 1 | en reticulum | + | + | ↑ | ↑ | + |
Transcription | |||||||
P43243 | Matrin-3 | nucleus | + | + | + | ↓ | + |
Q96AE4 | Far upstream element-binding protein 1 | nucleus | + | + | + | ↓ | + |
Transport | |||||||
Q9UN86 | Ras GTPase-activating protein-binding protein 2 | cytoplasm | − | ↓ | + | − | − |
Unknown | |||||||
Q5T1J5 | Putative coiled-coil-helix-coiled-coil-helix domain-containing protein CHCHD2P9, | mitochondrion | ↓ | ↓ | ↓ | ↓ | ↓ |
Q9Y6H1 | Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 | mitochondrion | ↓ | ↓ | ↓ | ↓ | ↓ |
Q9BQ39 | ATP-dependent RNA helicase DDX50 | nucleus | ↑ | + | + | ↓ | + |
Q13067 | G antigen 3 | unknown | + | + | + | ↓ | ↓ |
Q13069 | G antigen 5 | unknown | + | + | + | ↓ | ↓ |
Q13070 | G antigen 6 | unknown | + | + | + | ↓ | ↓ |
3.2. Direct Comparison of the Proteomes of K562 Cells Treated with Imatinib or Its Derivates
Accession | Protein Name | Localization | SK23 | SK16 | SK20 | Y18 |
---|---|---|---|---|---|---|
Cell cycle | ||||||
Q13501 | Sequestosome-1 | Cytoplasm | ↓ | ↓ | ↓ | ↓ |
P60323 | Nanos homolog 3 | Cytoplasm | ↑ | − | − | − |
Q92688 | Acidic leucine-rich nuclear phosphoprotein 32 family member B | Cytoplasm | ↓ | + | + | + |
Host-virus interaction | ||||||
O00571 | ATP-dependent RNA helicase DDX3X | Cytoplasm | ↑ | + | + | ↑ |
P28070 | Proteasome subunit beta type 4 | Cytoplasm | + | ↑ | + | + |
P23497 | Nuclear autoantigen Sp-100 | Nucleus | − | ↑ | − | − |
DNA and RNA related | ||||||
Q9UMS4 | Pre-mRNA-processing factor 19 | cytoplasm | + | + | + | ↓ |
P33316 | Deoxyuridine 5'-triphosphate nucleotidohydrolase | mitochondrion | + | + | ↑ | + |
Q9NR30 | Nucleolar RNA helicase 2 | nucleus | + | + | + | ↓ |
P63162 | Small nuclear ribonucleoprotein-associated protein N | nucleus | + | + | ↓ | + |
P22087 | rRNA 2'-O-methyltransferase fibrillarin | nucleus | + | + | + | ↓ |
Q8WW01 | tRNA-splicing endonuclease subunit Sen15 | nucleus | − | ↓ | − | + |
P14678 | Small nuclear ribonucleoprotein-associated proteins B and B' | nucleus | + | + | ↓ | + |
Nucleosome assembly | ||||||
P62805 | Histone H4 | chromosome | + | ↑ | ↑ | ↑ |
O60814 | Histone H2B type 1-K | chromosome | + | + | + | ↑ |
P06899 | Histone H2B type 1-J | chromosome | + | + | + | ↑ |
P23527 | Histone H2B type 1-O | chromosome | + | + | + | ↑ |
P57053 | Histone H2B type F-S | chromosome | + | + | + | ↑ |
P58876 | Histone H2B type 1-D | chromosome | + | + | + | ↑ |
P62807 | Histone H2B type 1-C/E/F/G/I | chromosome | + | + | + | ↑ |
Q16778 | Histone H2B type 2-E | chromosome | + | + | + | ↑ |
Q5QNW6 | Histone H2B type 2-F | chromosome | + | + | + | ↑ |
Q8N257 | Histone H2B type 3-B | chromosome | + | + | + | ↑ |
Q93079 | Histone H2B type 1-H | chromosome | + | + | + | ↑ |
Q96A08 | Histone H2B type 1-A | chromosome | + | + | + | ↑ |
Q99877 | Histone H2B type 1-N | chromosome | + | + | + | ↑ |
Q99879 | Histone H2B type 1-M | chromosome | + | + | + | ↑ |
Q99880 | Histone H2B type 1-L | chromosome | + | + | + | ↑ |
P84243 | Histone H3.3 | chromosome | + | − | − | ↑ |
Q16695 | Histone H3.1t | chromosome | + | − | − | ↑ |
Nucleosome assembly | ||||||
Q6NXT2 | Histone H3.3C | chromosome | + | − | − | ↑ |
Q71DI3 | Histone H3.2 | chromosome | + | − | − | ↑ |
P04908 | Histone H2A type 1-B/E | nucleus | + | + | + | ↑ |
P0C0S8 | Histone H2A type 1 | nucleus | + | + | + | ↑ |
P20671 | Histone H2A type 1-D | nucleus | + | + | + | ↑ |
Q16777 | Histone H2A type 2-C | nucleus | + | + | + | ↑ |
Q6FI13 | Histone H2A type 2-A | nucleus | + | + | + | ↑ |
Q7L7L0 | Histone H2A type 3 | nucleus | + | + | + | ↑ |
Q93077 | Histone H2A type 1-C | nucleus | + | + | + | ↑ |
Q96KK5 | Histone H2A type 1-H | nucleus | + | + | + | ↑ |
Q99878 | Histone H2A type 1-J | nucleus | + | + | + | ↑ |
Q9BTM1 | Histone H2A.J | nucleus | + | + | + | ↑ |
P68431 | Histone H3.1 | chromosome | + | − | − | ↑ |
Protein biosynthesis | ||||||
Q15046 | Lysine—tRNA ligase | cell membrane | ↓ | ↓ | ↓ | + |
P41567 | Eukaryotic translation initiation factor 1 | cytoplasm | + | ↓ | + | + |
O60739 | Eukaryotic translation initiation factor 1b | unknown | + | ↓ | + | + |
P07339 | Cathepsin D | lysosome | + | + | + | ↑ |
O00567 | Nucleolar protein 56 | cytoplasm | − | − | − | ↓ |
Q14137 | Ribosome biogenesis protein BOP1 | nucleus | − | − | − | ↓ |
O60884 | DnaJ homolog subfamily | cell membrane | + | − | ↓ | − |
Other | ||||||
P17516 | Aldo-keto reductase family 1 member C4 | cytoplasm | ↑ | ↑ | + | ↑ |
Q9UKK9 | ADP-sugar pyrophosphatase | intracellular | + | + | ↑ | ↑ |
P52895 | Aldo-keto reductase family 1 member C2 | cytoplasm | + | ↑ | + | + |
P02765 | Alpha-2-HS-glycoprotein | secreted | ↓ | ↓ | ↓ | ↓ |
Q09666 | Neuroblast differentiation-associated protein AHNAK | nucleus | ↑ | ↑ | ↑ | ↑ |
Q9UG63 | ATP-binding cassette sub-family F member 2 | mitochondrial envelope | − | − | − | ↓ |
P25705 | ATP synthase subunit alpha, mitochondrial | cell membrane | − | + | − | ↑ |
P08758 | Annexin A5 | cytoplasm | + | + | ↑ | ↑ |
P05937 | Calbindin | cytoplasm | − | ↑ | − | + |
P02768 | Serum albumin | secreted | − | ↓ | − | − |
P11171 | Protein 4.1 | cytoskeleton | ↑ | + | − | − |
Q14011 | Cold-inducible RNA-binding protein | cytoplasm | + | + | + | ↑ |
P35908 | Keratin, type II cytoskeletal 2 epidermal | intermediate filament/keratin | − | − | − | ↓ |
Transcription | ||||||
Q01844 | RNA-binding protein EWS | cell membrane | + | ↑ | + | + |
Q96AE4 | Far upstream element-binding protein 1 | nucleus | + | + | + | ↓ |
Translation | ||||||
Q16222 | UDP-N-acetylhexosamine pyrophosphorylase | cytoplasm | ↓ | ↓ | − | ↓ |
P05386 | 60S acidic ribosomal protein P1 | cytoplasm | + | + | + | ↓ |
P18621 | 60S ribosomal protein L17 | cytoplasm | ↓ | + | + | + |
Q04637 | Eukaryotic translation initiation factor 4 gamma 1 | cytoplasm | + | ↓ | + | + |
Q9Y5S9 | RNA-binding protein 8A | cytoplasm | + | + | + | ↓ |
unknown | ||||||
O15523 | ATP-dependent RNA helicase DDX3Y | cytoplasm | ↑ | − | − | + |
Q5T1J5 | Putative coiled-coil-helix-coiled-coil-helix domain-containing protein CHCHD2P9 | mitochondrion | ↓ | ↓ | ↓ | ↓ |
Q9Y6H1 | Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 | mitochondrion | ↓ | ↓ | ↓ | ↓ |
Q9BQ39 | ATP-dependent RNA helicase DDX50 | nucleus | + | + | + | ↓ |
Q13067 | G antigen 3 | unknown | + | + | + | ↓ |
Q13069 | G antigen 5 | unknown | + | + | + | ↓ |
Q13070 | G antigen 6 | unknown | + | + | + | ↓ |
Q8N7X1 | RNA-binding motif protein, X-linked-like-3 | unknown | − | − | ↓ | − |
3.3. Structural Effects
4. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sherbenou, D.W.; Druker, B.J. Applying the discovery of the Philadelphia chromosome. J. Clin. Investig. 2007, 117, 2067–2074. [Google Scholar] [CrossRef]
- Alvarez, R.H.; Kantarjian, H.; Cortes, J.E. The biology of chronic myelogenous leukemia: Implications for imatinib therapy. Semin. Hematol. 2007, 44, 4–14. [Google Scholar] [CrossRef]
- Sawyers, C.L. Chronic myeloid leukemia. N. Engl. J. Med. 1999, 340, 1330–1340. [Google Scholar] [CrossRef]
- Horita, M.; Andreu, E.J.; Benito, A.; Arbona, C.; Sanz, C.; Benet, I.; Fernandez-Luna, J.L. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by supressing STAT5-dependent expression of Bcl-xL. J. Exp. Hematol. 2000, 191, 977–984. [Google Scholar]
- Weisberg, E.; Manley, P.W.; Cowan-Jacob, S.W.; Hochhaus, A.; Griffin, J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 2007, 7, 345–356. [Google Scholar] [CrossRef]
- Daub, H.; Specht, K.; Ullrich, A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nat. Rev. Drug Discov. 2004, 3, 1001–1010. [Google Scholar] [CrossRef]
- Quintas-Cardama, A.; Kantarjian, H.; Cortes, J. Flying under the radar: The new wave of BCR-ABL inhibitors. Nat. Rev. Drug Discov. 2007, 6, 834–848. [Google Scholar]
- Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W.T.; Clarkson, B.; Kuriyan, J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000, 289, 1938–1942. [Google Scholar] [CrossRef]
- Apperley, J.F. Part I: Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007, 8, 1018–1029. [Google Scholar] [CrossRef]
- Karvela, M.; Helgason, G.V.; Holyoake, T.L. Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Rev. Anticancer Ther. 2012, 12, 381–392. [Google Scholar] [CrossRef]
- Quintás-Cardama, A.; Kantarjian, H.M.; Cortes, J.E. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control 2009, 16, 122–131. [Google Scholar]
- Skobridis, K.; Kinigopoulou, M.; Theodorou, V.; Giannousi, E.; Russell, A.; Chauhan, R.; Sala, R.; Brownlow, N.; Kiriakidis, S.; Domin, J.; et al. Novel imatinib derivatives with altered specificity between Bcr-Abl and FMS, KIT, and PDGF receptors. ChemMedChem 2010, 5, 130–139. [Google Scholar] [CrossRef]
- Eck, J.M.; Manley, M.W. The interplay of structural information and functional studies in kinase drug design: Insights from BCR-Abl. Curr. Opin. Cell Biol. 2009, 21, 288–295. [Google Scholar] [CrossRef]
- Balabanov, S.; Gontarewicz, A.; Ziegler, P.; Hartmann, U.; Kammer, W.; Copland, M.; Brassat, U.; Priemer, M.; Hauber, I.; Wilhelm, T.; et al. Hypusination of eukaryotic initiation factor 5A (eIF5A): A novel therapeutic target in BCR-ABL-positive leukemias identified by a proteomics approach. Blood 2007, 109, 1701–1711. [Google Scholar]
- Li, R.J.; Zhang, G.S.; Chen, Y.H.; Zhu, J.F.; Lu, Q.J.; Gong, F.J.; Kuang, W.Y. Down-regulation of mitochondrial ATPase by hypermethylation mechanism in chronic myeloid leukemia is associated with multidrug resistance. Ann. Oncol. 2010, 21, 1506–1514. [Google Scholar]
- Park, J.; Kim, S.; Oh, J.K.; Kim, J.Y.; Yoon, S.S.; Lee, D.; Kim, Y. Identification of differentially expressed proteins in imatinib mesylate-resistant chronic myelogenous cells. J. Biochem. Mol. Biol. 2005, 38, 725–738. [Google Scholar] [CrossRef]
- Balabanov, S.; Wilhelm, T.; Venz, S.; Keller, G.; Scharf, C.; Pospisil, H.; Braig, M.; Barett, C.; Bokemeyer, C.; Walther, R.; et al. Combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors. PLoS One 2013, 8, e5366. [Google Scholar]
- Corrêa, S.; Pizzatti, L.; Du Rocher, B.; Mencalha, A.; Pinto, D.; Abdelhay, E. A comparative proteomic study identified LRPPRC and MCM7 as putative actors in imatinib mesylate cross-resistance in Lucena cell line. Proteome Sci. 2012, 10. [Google Scholar] [CrossRef]
- Ferrari, G.; Pastorelli, R.; Buchi, F.; Spinelli, E.; Gozzini, A.; Bosi, A.; Santini, V. Comparative proteomic analysis of chronic myelogenous leukemia cells: Inside the mechanism of imatinib resistance. J. Proteome Res. 2007, 6, 367–375. [Google Scholar] [CrossRef]
- Pocaly, M.; Lagarde, V.; Etienne, G.; Dupouy, M.; Lapaillerie, D.; Claverol, S.; Vilain, S.; Bonneu, M.; Turcq, B.; Mahon, F.X.; et al. Proteomic analysis of an imatinib-resistant K562 cell line highlights opposing roles of heat shock cognate 70 and heat shock 70 proteins in resistance. Proteomics 2008, 12, 2394–2406. [Google Scholar]
- Xiong, L.; Zhang, J.; Yuan, B.; Dong, X.; Jiang, X.; Wang, Y. Global proteome quantification for discovering imatinib-induced perturbation of multiple biological pathways in K562 human chronic myeloid leukemia cell. J. Proteome Res. 2010, 5, 6007–6015. [Google Scholar]
- Ong, S.E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture SILAC as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376–386. [Google Scholar] [CrossRef]
- Liang, X.Q.; Hajivandi, M.; Veach, D.; Wisniewski, D.; Clarkson, B.; Resh, M.D.; Pope, R.M. Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to imatinib treatment in human chronic myelogenous leukemia cells. Proteomics 2006, 6, 4554–4564. [Google Scholar] [CrossRef]
- Gioia, R.; Leroy, C.; Drullion, C.; Lagarde, V.; Etienne, G.; Dulucq, S.; Lippert, E.; Roche, S.; Mahon, F.X.; Pasquet, J.M. Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells. Blood 2011, 118, 2211–2221. [Google Scholar] [CrossRef]
- Ghesquière, B.; Colaert, N.; Helsens, K.; Dejager, L.; Vanhaute, C.; Verleysen, K.; Kas, K.; Timmerman, E.; Goethals, M.; Libert, C.; et al. In vitro and in vivo protein-bound tyrosine nitration characterized by diagonal chromatography. Mol. Cell. Proteomics 2009, 8, 2642–2652. [Google Scholar] [CrossRef]
- Helsens, K.; Colaert, N.; Barsnes, H.; Muth, T.; Flikka, K.; Staes, A.; Timmerman, E.; Wortelkamp, S.; Sickmann, A.; Vandekerckhove, J.; et al. ms_lims, a simple yet powerful open source laboratory information management system for MS-driven proteomics. Proteomics 2010, 10, 1261–1264. [Google Scholar] [CrossRef]
- Colaert, N.; Helsens, K.; Impens, F.; Vandekerckhove, J.; Gevaert, K. Rover: A tool to visualize and validate quantitative proteomics data from different sources. Proteomics 2010, 10, 1226–1229. [Google Scholar] [CrossRef]
- Käll, L.; Storey, J.D.; MacCoss, M.J.; Noble, W.S. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J. Proteome Res. 2008, 7, 29–34. [Google Scholar]
- Martens, L.; Vandekerckhove, J.; Gevaert, K. DBToolkit: Processing protein databases for peptide-centric proteomics. Bioinformatics 2005, 21, 3584–3585. [Google Scholar]
- Vizcaíno, J.A.; Côté, R.; Csordas, A.; Dianes, J.A.; Fabregat, A.; Foster, J.; Griss, J.; Alpi, E.; Birim, M.; Contell, J.; et al. The proteomics identifications (pride) database and associated tools: Status in 2013. Nucleic Acids Res. 2013, 41, D1063–D1069. [Google Scholar] [CrossRef]
- PRIDE Archive—Proteomics data repository. Project: PXD000216. Available online: http://www.ebi.ac.uk/pride/archive/projects/PXD000216 (accessed on 17 July 2014).
- Cerami, E.G.; Gross, B.E.; Demir, E.; Rodchenkov, I.; Babur, O.; Anwar, N.; Schultz, N.; Bader, G.D.; Sander, C. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 2011, 39, D685–D690. [Google Scholar] [CrossRef]
- Ernst, T.; La Rosée, P.; Müller, M.C.; Hochhaus, A. BCR-ABL mutations in chronic myeloid leukemia. Hematol. Oncol. Clin. North Am. 2011, 25, 997–1008. [Google Scholar] [CrossRef]
- Soverini, S.; Martinelli, G.; Rosti, G.; Iacobucci, I.; Baccarani, M. Advances in treatment of chronic myeloid leukemia with tyrosine kinase inhibitors: The evolving role of Bcr-Abl mutations and mutational analysis. Pharmacogenomics 2012, 13, 1271–1284. [Google Scholar] [CrossRef]
- White, D.; Saunders, V.; Lyons, A.B.; Branford, S.; Grigg, A.; Bik To, L.; Hughes, T. In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood 2005, 106, 2520–2526. [Google Scholar]
- Schröder, M. Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochem. Pharmacol. 2010, 79, 297–306. [Google Scholar] [CrossRef]
- An, J.; Shi, J.; He, Q.; Lui, K.; Liu, Y.; Huang, Y.; Sheikh, M.S. CHCM1/CHCHD6, a novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. J. Biol. Chem. 2012, 287, 7411–7426. [Google Scholar]
- Darshi, M.; Mendiola, V.L.; Mackey, M.R.; Murphy, A.N.; Koller, A.; Perkins, G.A.; Ellisman, M.H.; Taylor, S.S. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J. Biol. Chem. 2011, 286, 2918–2932. [Google Scholar] [CrossRef]
- Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science 1998, 281, 1309–1312. [Google Scholar] [CrossRef]
- Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001, 15, 2922–2933. [Google Scholar]
- Gjerstorff, M.F.; Ditzel, H.J. An overview of the GAGE cancer/testis antigen family with the inclusion of newly identified members. Tissue Antigens 2008, 71, 187–192. [Google Scholar] [CrossRef]
- Olsen, J.V.; Vermeulen, M.; Santamaria, A.; Kumar, C.; Miller, M.L.; Jensen, L.J.; Gnad, F.; Cox, J.; Jensen, T.S.; Nigg, E.A.; et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 2010, 3, ra3. [Google Scholar] [CrossRef]
- Laurin, N.; Brown, J.P.; Morissette, J.; Raymond, V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am. J. Hum. Genet. 2002, 70, 1582–1588. [Google Scholar]
- Sanz, L.; Sanchez, P.; Lallena, M.-J.; Diaz-Meco, M.T.; Moscat, J. The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J. 1999, 18, 3044–3053. [Google Scholar] [CrossRef]
- Seibenhener, M.L.; Babu, J.R.; Geetha, T.; Wong, H.C.; Krishna, N.R.; Wooten, M.W. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 2004, 24, 8055–8068. [Google Scholar] [CrossRef]
- Huang, Y.; Laval, S.H.; van Remoortere, A.; Baudier, J.; Benaud, C.; Anderson, L.V.; Straub, V.; Deelder, A.; Frants, R.R.; den Dunnen, J.T.; et al. AHNAK, a novel component of the dysferlin protein complex, redistributes to the cytoplasm with dysferlin during skeletal muscle regeneration. FASEB J. 2007, 21, 732–742. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Arvaniti, K.; Papadioti, A.; Kinigopoulou, M.; Theodorou, V.; Skobridis, K.; Tsiotis, G. Proteome Changes Induced by Imatinib and Novel Imatinib Derivatives in K562 Human Chronic Myeloid Leukemia Cells. Proteomes 2014, 2, 363-381. https://doi.org/10.3390/proteomes2030363
Arvaniti K, Papadioti A, Kinigopoulou M, Theodorou V, Skobridis K, Tsiotis G. Proteome Changes Induced by Imatinib and Novel Imatinib Derivatives in K562 Human Chronic Myeloid Leukemia Cells. Proteomes. 2014; 2(3):363-381. https://doi.org/10.3390/proteomes2030363
Chicago/Turabian StyleArvaniti, Katerina, Anastasia Papadioti, Maria Kinigopoulou, Vassiliki Theodorou, Konstantinos Skobridis, and Georgios Tsiotis. 2014. "Proteome Changes Induced by Imatinib and Novel Imatinib Derivatives in K562 Human Chronic Myeloid Leukemia Cells" Proteomes 2, no. 3: 363-381. https://doi.org/10.3390/proteomes2030363
APA StyleArvaniti, K., Papadioti, A., Kinigopoulou, M., Theodorou, V., Skobridis, K., & Tsiotis, G. (2014). Proteome Changes Induced by Imatinib and Novel Imatinib Derivatives in K562 Human Chronic Myeloid Leukemia Cells. Proteomes, 2(3), 363-381. https://doi.org/10.3390/proteomes2030363