Integrated Analysis of Proteomic Marker Databases and Studies Associated with Aging Processes and Age-Dependent Conditions: Optimization Proposals for Biomedical Research
Abstract
1. Introduction
2. Materials and Methods
2.1. Preliminary Document Processing
2.2. Analysis of Proteomic Databases and Resources Dedicated to Aging Research
2.3. Analysis of Experimental Proteomic Studies
2.4. Generation of Venn Diagrams and UpSets
3. Results
3.1. Methods of Obtaining Proteomic Data
3.2. Representation of Proteomics Data Acquisition Methods in Databases
3.3. A Brief Overview of Main Proteomics Databases and Repositories Containing Information on Aging Processes
3.4. Analysis of Selection Criteria for Experimental Studies for Addition to Database Bibliographies
3.5. Methodological Foundations for Biomarker Selection and Heterogeneous Data Integration
3.6. Analysis of Experimental Proteomic Study Designs
3.6.1. The Following Studies Were Also Used for the Research
3.6.2. Additionally, Eight Meta-Analyses Were Analyzed
3.7. Search for Proteomic Markers Associated with Aging and Age-Related Diseases in Experimental Proteomic Studies
3.8. Data Integration Challenges for Heterogeneous Data
4. Discussion
4.1. Proteomic Databases
4.2. Experimental Studies
4.3. Methods for Obtaining Proteomic Data
4.4. Optimization Proposals for Biomedical Research
4.5. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Omics in a Digital World: The Role of Bioinformatics in Providing New Insights Into Human Aging. Aging Cell 2021, 20, e13313. [Google Scholar]
- Lehallier, B.; Gate, D.; Schaum, N.; Nanasi, T.; Lee, S.E.; Yousef, H.; Moran Losada, P.; Berdnik, D.; Keller, A.; Verghese, J.; et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 2019, 25, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Huang, Y.; Wang, Y.; Li, Y.; Zhang, Y.; Wu, J.; Zhao, F.; Meng, S.; Yu, X.; Ma, Q.; et al. Profiling plasma peptides for the identification of potential ageing biomarkers in Chinese Han adults. PLoS ONE 2012, 7, e39726. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Basisty, N.; Fantoni, G.; Candia, J.; Moore, A.Z.; Biancotto, A.; Schilling, B.; Bandinelli, S.; Ferrucci, L. Plasma proteomic biomarker signature of age predicts health and life span. eLife 2020, 9, e61073. [Google Scholar] [CrossRef] [PubMed]
- Sathyan, S.; Ayers, E.; Gao, T.; Weiss, E.F.; Milman, S.; Verghese, J.; Barzilai, N. Plasma proteomic profile of age, health span, and all-cause mortality in older adults. Aging Cell 2020, 19, e13250. [Google Scholar] [CrossRef]
- Lind, L.; Sundström, J.; Larsson, A.; Lampa, E.; Ärnlöv, J.; Ingelsson, E. Longitudinal effects of aging on plasma proteins levels in older adults—Associations with kidney function and hemoglobin levels. PLoS ONE 2019, 14, e0212060. [Google Scholar] [CrossRef]
- Oh, H.S.H.; Rutledge, J.; Nachun, D.; Pálovics, R.; Abiose, O.; Moran-Losada, P.; Channappa, D.; Urey, D.Y.; Kim, K.; Sung, Y.J.; et al. Organ aging signatures in the plasma proteome track health and disease. Nature 2023, 624, 164–172. [Google Scholar] [CrossRef]
- Liu, X.; Pan, S.; Xanthakis, V.; Vasan, R.S.; Psaty, B.M.; Austin, T.R.; Newman, A.B.; Sanders, J.L.; Wu, C.; Tracy, R.P.; et al. Plasma proteomic signature of decline in gait speed and grip strength. Aging Cell 2022, 21, e13736. [Google Scholar] [CrossRef]
- Schwenk, J.M.; Omenn, G.S.; Sun, Z.; Campbell, D.S.; Baker, M.S.; Overall, C.M.; Aebersold, R.; Moritz, R.L.; Deutsch, E.W. Construction of Protein Sequence Databases for Metaproteomics: A Review of the Current Tools and Databases. Proteomics 2024, 24, e2300219. [Google Scholar]
- Coenen, L.; Lehallier, B.; de Vries, H.E.; Middeldorp, J. Markers of aging: Unsupervised integrated analyses of the human plasma proteome. Front. Aging 2023, 4, 1112109. [Google Scholar] [CrossRef]
- Pernemalm, M.; Sandberg, A.; Zhu, Y.; Boekel, J.; Tamburro, D.; Schwenk, J.M.; Björk, A.; Wiken, M.; Mattsson, J.S.M.; Razavi, M.; et al. The Importance, Challenges, and Possible Solutions for Sharing Proteomics Data While Safeguarding Individuals’ Privacy. Mol. Cell Proteomics 2024, 23, 100718. [Google Scholar]
- Sahu, S.K.; Tiwari, N.; Kelkar, T.; Sahu, R. High-throughput proteomics: A methodological mini-review. High. Throughput 2022, 11, 15. [Google Scholar]
- Zampino, M.; AlGhatrif, M.; Kuo, P.-L.; Simonsick, E.M.; Ferrucci, L. Longitudinal Changes in Resting Metabolic Rates with Aging Are Accelerated by Diseases. Nutrients 2020, 12, 3061. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.; Beavis, R.C. Bioinformatic analysis of proteomics data. Methods Mol. Biol. 2014, 1007, 327–348. [Google Scholar]
- De Magalhães, J.P.; Finch, C.E.; Janssens, G. Computational biology for ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 51–57. [Google Scholar]
- Zhang, B.; Chambers, M.C.; Tabb, D.L. Proteomics-The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience. Proteomics 2024, 24, e2300441. [Google Scholar]
- Aebersold, R.; Agar, J.N.; Amster, I.J.; Baker, M.S.; Bertozzi, C.R.; Boja, E.S.; Costello, C.E.; Cravatt, B.F.; Fenselau, C.; Garcia, B.A.; et al. A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of This Field. Proteomes 2020, 9, 16. [Google Scholar]
- Krassowski, M.; Das, V.; Sahu, S.K.; Misra, B.B. A practical guide to interpreting and generating bottom-up proteomics data visualizations. Proteomics 2022, 22, e2100103. [Google Scholar]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M. A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics. Mol. Cell Proteomics 2005, 4, 1920–1932. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M. The human secretome. Sci Signal. 2019, 12, eaaz0274. [Google Scholar] [CrossRef]
- Eisenhaber, B.; Schneider, G.; Wildpaner, M.; Eisenhaber, F. A whole-genome bioinformatics approach to selection of antigens for systematic antibody generation. J. Mol. Recognit. 2008, 21, 319–329. [Google Scholar]
- Krassowski, M.; Richardson, S.; Northcott, P. Next generation pan-cancer blood proteome profiling using proximity extension assay. Nat. Commun. 2023, 14, 5308. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma. Mol. Cell Proteom. 2023, 22, 100519. [Google Scholar]
- Sinitcyn, P.; Rudolph, J.D.; Cox, J. Computational Methods for Understanding Mass Spectrometry–Based Shotgun Proteomics Data. Annu. Rev. Biomed. Data Sci. 2018, 1, 207–234. [Google Scholar] [CrossRef]
- Slagboom, P.E.; Beekman, M.; Passtoors, W.M.; Deelen, J.; Vaarhorst, A.A.; Boer, J.M.; van den Akker, E.B.; van Heemst, D.; de Craen, A.J.; Maier, A.B.; et al. Integrated analysis of proteomics data to assess and improve the scope of mass spectrometry based genome annotation. Genome Biol. 2009, 10, R71. [Google Scholar]
- Riley, N.M.; Coon, J.J. Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. Anal. Chem. 2016, 88, 74–94. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, H.; Kiran, S.; Kaur, J.; Sen, T. A review on available proteomic databases, annotation techniques and data projects important in male reproductive physiology research. World J. Urol. 2024, 42, 205. [Google Scholar]
- Tacutu, R.; Thornton, D.; Johnson, E.; Budovsky, A.; Barardo, D.; Craig, T.; Diana, E.; Lehmann, G.; Toren, D.; Wang, J.; et al. Human Ageing Genomic Resources: New and updated databases. Nucleic Acids Res. 2018, 46, D1083–D1090. [Google Scholar] [CrossRef]
- Vizcaíno, J.A.; Côté, R.G.; Csordas, A.; Dianes, J.A.; Fabregat, A.; Foster, J.M.; Griss, J.; Alpi, E.; Birim, M.; Contell, J.; et al. Proteomics Databases and Websites. In Current Protocols in Bioinformatics; Unit 13.7; John Wiley & Sons: Hoboken, NJ, USA, 2012; Chapter 13. [Google Scholar]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Aging Atlas a multi-omics database for aging biology. Nucleic Acids Res. 2020, 49, D825–D830. [Google Scholar] [CrossRef]
- Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; et al. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 2004, 32, D115–D119. [Google Scholar] [CrossRef]
- Choudhary, C.; Weinert, B.T.; Nishida, Y.; Verdin, E.; Mann, M. Application of text-mining for updating protein post-translational modification annotation in UniProtKB. Database 2013, 2013, bat031. [Google Scholar]
- Huang, K.; Liu, X.; Zhang, Z.; Wang, T.; Xu, H.; Li, Q.; Jia, Y.; Huang, L.; Kim, P.; Zhou, X. AgeAnnoMO: A knowledgebase of multi-omics annotation for animal aging. Nucleic Acids Res. 2024, 52, D822–D834. [Google Scholar] [CrossRef] [PubMed]
- Hühne, R.; Thalheim, T.; Sühnel, J. AgeFactDB—The JenAge Ageing Factor Database--towards data integration in ageing research. Nucleic Acids Res. 2014, 42, D892–D896. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shang, S.; Guo, S.; Wang, X.; Zhou, H.; Sun, Y.; Gan, J.; Zhang, Y.; Li, X.; Ning, S.; et al. AgingBank: A manually curated knowledgebase and high-throughput analysis platform that provides experimentally supported multi-omics data relevant to aging in multiple species. Brief Bioinform. 2022, 23, bbac438. [Google Scholar] [CrossRef]
- Tadaka, S.; Kawashima, J.; Hishinuma, E.; Saito, S.; Okamura, Y.; Otsuki, A.; Kojima, K.; Komaki, S.; Aoki, Y.; Kanno, T.; et al. jMorp: Japanese Multi-Omics Reference Panel update report 2023. Nucleic Acids Res. 2024, 52, D622–D632. [Google Scholar] [CrossRef]
- Ma, J.; Chen, T.; Wu, S.; Yang, C.; Bai, M.; Shu, K.; Li, K.; Zhang, G.; Jin, Z.; He, F.; et al. iProX: An integrated proteome resource. Nucleic Acids Res. 2019, 47, D1211–D1217. [Google Scholar] [CrossRef]
- Okuda, S.; Watanabe, Y.; Moriya, Y.; Kawano, S.; Yamamoto, T.; Matsumoto, M.; Takami, T.; Kobayashi, D.; Araki, N.; Yoshizawa, A.C.; et al. jPOSTrepo: An international standard data repository for proteomes. Nucleic Acids Res. 2017, 45, D1107–D1111. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Carver, J.; Pullman, B.S.; Cha, S.W.; Bandeira, N. Assembling the Community-Scale Discoverable Human Proteome. Cell Syst. 2018, 7, 412–421.e5. [Google Scholar] [CrossRef]
- Mracica, T.B.; Anghel, A.; Ion, C.F.; Moraru, C.V.; Tacutu, R.; Lazar, G.A. MetaboAge DB: A repository of known ageing-related changes in the human metabolome. Biogerontology 2020, 21, 763–771. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bandla, C.; Kundu, D.J.; Kamatchinathan, S.; Bai, J.; Hewapathirana, S.; John, N.S.; Prakash, A.; Walzer, M.; Wang, S.; et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025, 53, D543–D553. [Google Scholar] [CrossRef]
- Goldfarb, T.; Kodali, V.K.; Pujar, S. NCBI RefSeq: Reference sequence standards through 25 years of curation and annotation. Nucleic Acids Res. 2025, 53, D243–D257. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Alpi, E.; Wang, R.; Hermjakob, H.; Vizcaíno, J.A. Making proteomics data accessible and reusable: Current state of proteomics databases and repositories. Proteomics 2014, 15, 930–949. [Google Scholar] [CrossRef]
- Wilhelm, M.; Schlegl, J.; Hahne, H.; Gholami, A.M.; Lieberenz, M.; Savitski, M.M.; Ziegler, E.; Butzmann, L.; Gessulat, S.; Marx, H.; et al. Exploring the potential of public proteomics data. Nat. Methods 2016, 13, 259–260. [Google Scholar]
- Wilhelm, M.; Zolg, D.P.; Graber, M.; Gessulat, S.; Schmidt, T.; Schnatbaum, K.; Schwencke-Westphal, C.; Seifert, P.; Müller, J.B.; Proto, G.; et al. Tissue proteomics repositories for data reanalysis. Nat. Methods 2024, 21, 17–24. [Google Scholar]
- Bandeira, N.; Deutsch, E.W.; Kohlbacher, O.; Martens, L.; Vizcaíno, J.A. Data Management of Sensitive Human Proteomics Data: Current Practices, Recommendations, and Perspectives for the Future. Mol. Cell Proteom. 2021, 20, 100071. [Google Scholar] [CrossRef]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. A Golden Age for Working with Public Proteomics Data. Trends Biochem. Sci. 2017, 42, 914–922. [Google Scholar] [CrossRef]
- De Magalhães, J.P.; Toussaint, O. GenAge: A genomic and proteomic network map of human ageing. FEBS Lett. 2004, 571, 243–247. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.; Li, J.; Xiong, Z.; Yang, K.; Ye, W.; Ren, J.; Wang, Q.; Xiong, M.; Zheng, Z.; et al. HALL: A comprehensive database for human aging and longevity studies. Nucleic Acids Res. 2024, 52, D909–D918. [Google Scholar] [CrossRef]
- Piovesan, D.; Necci, M.; Escobedo, N.; Monzon, A.M.; Hatos, A.; Mičetić, I.; Quaglia, F.; Paladin, L.; Ramasamy, P.; Dosztányi, Z.; et al. Best practices for the manual curation of intrinsically disordered proteins in DisProt. Database 2024, 2024, baae013. [Google Scholar] [CrossRef]
- Arthur, L.; Esaulova, E.; Mogilenko, D.A.; Tsurinov, P.; Burdess, S.; Laha, A.; Presti, R.; Goetz, B.; Watson, M.A.; Goss, C.W.; et al. Cellular and plasma proteomic determinants of COVID-19 and non-COVID-19 pulmonary diseases relative to healthy aging. Nat. Aging 2021, 1, 535–549. [Google Scholar] [CrossRef]
- Robbins, J.M.; Peterson, B.; Schranner, D.; Tahir, U.A.; Rienmüller, T.; Deng, S.; Keyes, M.J.; Katz, D.H.; Beltran, P.M.J.; Barber, J.L.; et al. Human plasma proteomic profiles indicative of cardiorespiratory fitness. Nat. Metab. 2021, 3, 786–797. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, P.; Federico, A.; Morris, M.; Gurinovich, A.; Tanaka, T.; Chandler, K.B.; Andersen, S.L.; Denis, G.; Costello, C.E.; Ferrucci, L.; et al. Protein signatures of centenarians and their offspring suggest centenarians age slower than other humans. Aging Cell 2021, 20, e13290. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.D.; Galbraith, M.D.; Kinning, K.T.; Bartsch, K.W.; Levinsky, N.C.; Araya, P.; Smith, K.P.; Granrath, R.E.; Shaw, J.R.; Baxter, R.M.; et al. The COVIDome Explorer researcher portal. Cell Rep. 2021, 36, 109527. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.A.; Kivimaki, M.; Langenberg, C.; Hingorani, A.D.; Casas, J.P.; Bouchard, C.; Jonasson, C.; Sarzynski, M.A.; Shipley, M.J.; Alexander, L.; et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 2019, 25, 1851–1857. [Google Scholar] [CrossRef]
- Wilson, E.N.; Young, C.B.; Benitez, J.R.; Swarovski, M.S.; Feinstein, I.; Vandijck, M.; Le Guen, Y.; Kasireddy, N.M.; Shahid, M.; Corso, N.K.; et al. Performance of a fully automated Lumipulse plasma phospho-tau181 assay for Alzheimer’s disease. Alz. Res. Therapy 2022, 14, 172. [Google Scholar] [CrossRef]
- Berg, L.; McKeel, D.W.; Miller, J.P.; Storandt, M.; Rubin, E.H.; Morris, J.C.; Baty, J.; Coats, M.; Norton, J.; Goate, A.M.; et al. Clinicopathologic studies in cognitively healthy aging and Alzheimer disease: Relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch. Neurol. 1998, 55, 326–335. [Google Scholar] [CrossRef]
- Xu, R.; Gong, C.X.; Duan, C.M.; Huang, J.C.; Yang, G.Q.; Yuan, J.J.; Zhang, Q.; Xiong, X.Y.; Yang, Q.W. Age-Dependent Changes in the Plasma Proteome of Healthy Adults. J. Nutr. Health Aging. 2020, 24, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Siino, V.; Ali, A.; Accardi, G.; Aiello, A.; Ligotti, M.E.; Mosquim Junior, S.; Candore, G.; Caruso, C.; Levander, F.; Vasto, S. Plasma proteome profiling of healthy individuals across the life span in a Sicilian cohort with long-lived individuals. Aging Cell 2022, 21, e13684. [Google Scholar] [CrossRef]
- Zuliani, G.; Volpato, S.; Dugo, M.; Vigna, G.B.; Morieri, M.L.; Maggio, M.; Cherubini, A.; Bandinelli, S.; Guralnik, J.M.; Ferrucci, L. Combining LDL-C and HDL-C to predict survival in late life: The InChianti study. PLoS ONE 2017, 12, e0185307. [Google Scholar] [CrossRef]
- Fried, L.P.; Borhani, N.O.; Enright, P.; Furberg, C.D.; Gardin, J.M.; Kronmal, R.A.; Kuller, L.H.; Manolio, T.A.; Mittelmark, M.B.; Newman, A.; et al. The Cardiovascular Health Study: Design and rationale. Ann. Epidemiol. 1991, 1, 263–276. [Google Scholar] [CrossRef]
- Feinleib, M.; Kannel, W.B.; Garrison, R.J.; McNamara, P.M.; Castelli, W.P. The Framingham Offspring Study. Design and preliminary data. Prev. Med. 1975, 4, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Biancotto, A.; Moaddel, R.; Moore, A.Z.; Gonzalez-Freire, M.; Aon, M.A.; Candia, J.; Zhang, P.; Cheung, F.; Fantoni, G.; et al. Plasma proteomic signature of age in healthy humans. Aging Cell 2018, 17, e12799. [Google Scholar] [CrossRef] [PubMed]
- Lehallier, B.; Gate, D.; Schaum, N.; Nanasi, T.; Lee, S.E.; Yousef, H.; Losada, P.M.; Berdnik, D.; Keller, A.; Verghese, J.; et al. Multiomics of Aging and Aging-Related Diseases. Aging Cell 2024, 23, e13796. [Google Scholar]
- Ye, S.; Ma, L.; Zhang, R.; Liu, F.; Jiang, P.; Xu, J.; Cao, H.; Du, X.; Lin, F.; Cheng, L.; et al. Plasma proteomic and autoantibody profiles reveal the proteomic characteristics involved in longevity families in Bama, China. Clin. Proteom. 2019, 16, 22. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, A.; Kshetri, N.; Lal, S.K. Proteomics analysis of aging proteins. Methods Mol. Biol. 2023, 2549, 187–206. [Google Scholar]
- Argentieri, M.A.; Xiao, S.; Bennett, D.; Winchester, L.; Nevado-Holgado, A.J.; Ghose, U.; Albukhari, A.; Yao, P.; Mazidi, M.; Lv, J.; et al. Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations. Nat. Med. 2024, 30, 2450–2460. [Google Scholar] [CrossRef]
- Kuo, C.-L.; Chen, Z.; Liu, P.; Pilling, L.C.; Atkins, J.L.; Fortinsky, R.H.; Kuchel, G.A.; Diniz, B.S. Proteomic aging clock (PAC) predicts age-related outcomes in middle-aged and older adults. Aging Cell 2024, 23, e14195. [Google Scholar] [CrossRef]
- Johnson, A.A.; Shokhirev, M.N.; Wyss-Coray, T.; Lehallier, B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res. Rev. 2020, 60, 101070. [Google Scholar] [CrossRef]
- Magalhães, J.P.; Curado, J.; Church, G.M. An overview of human protein databases and their application to functional proteomics in health and disease. Protein Pept. Lett. 2011, 18, 1036–1046. [Google Scholar]
- Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E.N.; Carter, J.; Dalby, A.B.; Eaton, B.E.; Fitzwater, T.; et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 2010, 5, e15004. [Google Scholar] [CrossRef]
- Fernandez-Berrocal, M.; Lamberti, J.; Torrens-Mas, M.; Company, M.M.; Pons, D.G.; Roca, P.; Sastre-Serra, J.; Oliver, J. Proteomics An Emerging Tools, Database and Technique for Understanding Biological System. J. Proteome Res. 2023, 22, 3881–3894. [Google Scholar]
- Larance, M.; Lamond, A.I. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology. Nucleic Acids Res. 2013, 41, e171. [Google Scholar] [CrossRef]




| Age-Related Diseases | Proteins Number |
|---|---|
| Abdominal obesity-metabolic syndrome | 4 |
| Alzheimer disease | 21 |
| Anemia | 35 |
| Arthritis (including Juvenile arthritis) | No |
| Autoimmune disease | 24 |
| Cardiomyopathy | 64 |
| Coronary artery disease | 5 |
| Cataract | 54 |
| Chronic obstructive pulmonary disease (COPD) | No |
| Dementia | No |
| Diabetes mellitus | 8 |
| Hertight | No |
| Hypertension (Essential hypertension) | 1 |
| Macular degeneration | 26 |
| Osteoporosis | 26 |
| Migraine | 5 |
| Multiple sclerosis | 4 |
| Nephrolithiasis (Kidney Stones) | 13 |
| Obesity | 19 |
| Osteoarthritis | 10 |
| Osteoporosis (listed again) | 5 |
| Parkinson disease | 46 |
| Rheumatoid arthritis | 22 |
| Type 2 diabetes mellitus | 24 |
| No. | Database | Data Volume (2024) | Methodological Requirements |
|---|---|---|---|
| 1 | AgeAnnoMO | Samples 8586 Dataset 136 | Genetic experiments |
| 2 | AgeFactDB | Ageing Factors 16,599 Genes 16,450 Compounds 91 Other Ageing Factors 58 | Aging factors |
| 3 | Aging Atlas | 1133 Aging factors | Aging omics data |
| 4 | AgingBank | 503 genes across various Hallmarks of aging | Aging genes/proteins |
| 5 | HAGR | Human genes: 307 | Longevity/gerontology |
| 6 | HALL | 500+ researches | Healthy aging |
| 7 | Human Protein Atlas | Consists of 1162 proteins quantified by Proximity Extension Assay (PEA) and 146 proteins quantified by isotope dilution strategies | Immunohistochemistry, transcriptomics |
| 8 | iProX | 2521 datasets for humans | Proteomic MS data |
| 9 | jMorp | Results of proteome analysis of approximately 500 Japanese plasma samples | Morphological data |
| 10 | jPOSTrepo | 3573 projects are registered. 2668 are opened. 460 species. | Proteomic data |
| 11 | KEGG | Pathway maps 580 Human diseases 2963 | Pathway mapping |
| 12 | MassIVE | Public Datasets: 17,711, Proteins: 191,740, Number of Files: 11,158,091, Peptides: 9,906,636 | Any MS data |
| 13 | MetaboAge DB | 1500+ metabolites | Aging metabolomics |
| 14 | PRIDE Archive | Contains over 42,000 datasets | MS/MS data, standard formats |
| 15 | STRING | Homo sapiens has 19,488 proteins with network connections | Protein interactions |
| 16 | UniProt | 220+ million records | Experimental validation |
| No. | Study Title | Number of Samples | Age Distribution | Method Used | Number of Proteins |
|---|---|---|---|---|---|
| 1 | Plasma proteomic signature of age in healthy humans (2018) [63] | 240 healthy men and women | 22–93 years | SomaScan | 217 |
| 2 | Undulating changes in human plasma proteome profiles across the lifespan (2019) [2] | 4263 humans | 18–95 years | LC-MS/MS | 373 |
| 3 | Plasma proteomic profile of age, health span, and all-cause mortality in older adults (2020) [5] | 1025 people from the LonGenity cohort 55.7% are women. | 65–95 years | SomaScan | 754 |
| 4 | Plasma proteome profiling of healthy individuals across the life span in a Sicilian cohort with long-lived individuals (2022) [59] | 86 participants | 22–111 years | LC-MS/MS | 410 |
| 5 | Profiling plasma peptides for the identification of potential ageing biomarkers in Chinese Han adults (2012) [3] | 1890 people (1136 men and 754 women). | 18–82 years | LC-MS/MS | 44 |
| 6 | Plasma proteomic and autoantibody profiles reveal the proteomic characteristics involved in longevity families in Bama, China (2019) [65] | 66 people (33 people—descendants of long-lived families (longevity group), and the remaining 33—control group from families without a history of longevity). | 34–56 years | LC-MS/MS | 525 |
| 7 | Successful aging insights from proteome analyses of healthy centenarians (2020) [67] | 18 people, divided into two groups: 9 healthy centenarians and 9 control participants. | 67–81 years | LC-MS/MS | 49 |
| 8 | Age-Dependent Changes in the Plasma Proteome of Healthy Adults (2020) [58] | 118 healthy adult participants, divided into 3 groups: 21–30 years old (young), 41–50 years old (middle-aged) and ≥60 years old (elderly). | 21–93 years | LC-MS/MS | 1069 proteins, of which 845 were quantitatively determined. |
| 9 | Longitudinal effects of aging on plasma proteins levels in older adults—associations with kidney function and hemoglobin levels (2019) [6] | 1016 humans | 70 years old at the start of the study. Measurements were conducted at ages 70, 75, and 80 years. | LC-MS/MS | 84 proteins, of which 61 proteins showed significant changes over 10 years. |
| 10 | Plasma proteomic biomarker signature of age predicts health and life span (2020) [4] | 997 humans | 21–102 years | LC-MS/MS | 651 age-related proteins were identified (506 were overrepresented, 145 decreased with age) |
| 11 | TMT-Based Quantitative Proteomic Analysis Reveals Proteomic Changes Involved in Longevity (2019) [47] | 66 people (33 people—descendants of long-lived families (longevity group), and the remaining 33—control group from families without a history of longevity) | 34–56 years | LC-MS/MS | 175 (54 were up-regulated and 121 were down-accumulated) |
| 12 | Markers of aging Unsupervised integrated analyses of the human plasma proteome (2023) [36] | Four different cohorts: Arthur et al., with 150 participants, Robbins et al., with 745 participants, Sathyan et al., with 1025 participants, Ferkingstad et al., with 35,559 participants. | 16–95 years | LC-MS/MS | 273 |
| 13 | Plasma proteomic signature of decline in gait speed and grip strength (2022) [8] | 2854 people from the Cardiovascular Health Study (CHS) and 1130 participants from the Framingham Offspring Study (FOS) | 29–100 years | LC-MS/MS | 14 |
| 14 | Organ aging signatures in the plasma proteome track health and disease (2023) [7] | 5676 adults from five independent cohorts (KADRC (train), KADRC (test), Covance, LonGenity, SADRC, SAMS) | 19–95 years | LC-MS/MS | 580 |
| 15 | Age prediction from human blood plasma using proteomic and small RNA data a comparative analysis (2023) {16} | 103 participants | 20–83 years | Hyper Reaction Monitoring mass spectrometry (HRM-MS) | 21 |
| 16 | Global analysis of aging-related protein structural changes uncovers enzyme-polymerization-based control of longevity (2023) [32] | Fractions of young (average age 0.6 divisions) and old (average age 4.2 divisions) budding yeast cells. | Limited proteolysis-mass spectrometry (LiP-MS) | 468 | |
| 17 | Markers of aging Unsupervised integrated analyses of the human plasma proteome (2023) [36] | 37,479 people from four independent large-scale studies. (150, 25–80; 745, 16–66; 1025, 65–95; 35,559, mean 55). | 16–95 years | SomaScan platform | 5000 |
| 18 | Organ aging signatures in the plasma proteome track health and disease (2023) [7] | 5676 people in five independent cohorts (Covance n = 1029, 19–89; LonGenity n = 962, 61–95; SAMS, n = 192, 60–88; Stanford-ADRC, n = 409, 36–93; Knight-ADRC AD, n = 1677, 27–101). | 19–95 years | SomaLogic SomaScan assay | 4979 |
| 19 | Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations (2024) [67] | UK Biobank (45441, 39–71 years); China Kadoorie Biobank (3977 CKB, 30–78 years); FinnGen (1990 Finnish, 19–78 years). | 19–78 years | PEA | 204 |
| 20 | Proteomics in aging research A roadmap to clinical, translational research (2021) [20] | 33 publications—12 (human plasma), 9 (14 different matrices in humans) and 12 (21 different species/matrices). | 14–103 years | LC-MS, SOMAscan, PEA | 232 |
| 21 | Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age (2020) [69] | 11,225 people from 32 studies | <1–95 years | LC-MS/MS, SOMAscan, 2D gel electrophoresis, SWATH-MS. | 1128/32 |
| 22 | Meta-analysis of age-related gene expression profiles identifies common signatures of aging (2009) [12] | 27 datasets (12 mouse experiments, 11 rat experiments, and 4 human experiments) | 20–106 years | Microarrays | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arbatskiy, M.S.; Balandin, D.E.; Churov, A.V. Integrated Analysis of Proteomic Marker Databases and Studies Associated with Aging Processes and Age-Dependent Conditions: Optimization Proposals for Biomedical Research. Proteomes 2025, 13, 57. https://doi.org/10.3390/proteomes13040057
Arbatskiy MS, Balandin DE, Churov AV. Integrated Analysis of Proteomic Marker Databases and Studies Associated with Aging Processes and Age-Dependent Conditions: Optimization Proposals for Biomedical Research. Proteomes. 2025; 13(4):57. https://doi.org/10.3390/proteomes13040057
Chicago/Turabian StyleArbatskiy, Mikhail S., Dmitriy E. Balandin, and Alexey V. Churov. 2025. "Integrated Analysis of Proteomic Marker Databases and Studies Associated with Aging Processes and Age-Dependent Conditions: Optimization Proposals for Biomedical Research" Proteomes 13, no. 4: 57. https://doi.org/10.3390/proteomes13040057
APA StyleArbatskiy, M. S., Balandin, D. E., & Churov, A. V. (2025). Integrated Analysis of Proteomic Marker Databases and Studies Associated with Aging Processes and Age-Dependent Conditions: Optimization Proposals for Biomedical Research. Proteomes, 13(4), 57. https://doi.org/10.3390/proteomes13040057

