Effect of External Electric Field Stress on Gliadin Protein Conformation
Abstract
:1. Introduction
2. Experimental
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
0 | GLN | GLN | TYR | PRO | SER | GLY | GLU | GLY | SER |
10 | PHE | GLN | PRO | SER | GLN | GLU | ASN | PRO | GLN |
3. Results and Discussion
3.1. Secondary Structure Analysis
3.2. Dipole Moment Distribution
Molecule | Electric field strength (V/nm) | RMSD average (nm) | Rg average (nm) | Total Dipole moment (Debye) |
---|---|---|---|---|
Gliadin protein | 0 | 0.536 ± 0.131 | 0.942 ± 0.095 | 59.8 ± 38.66 |
Gliadin protein | 0.001 | 0.461 ± 0.102 | 1.030 ± 0.065 | 33.3 ± 78.48 |
Gliadin protein | 0.002 | 0.617 ± 0.137 | 0.911 ± 0.094 | 26.9 ± 53.41 |
3.3. Root Mean Square Deviation (RMSD)
Without electric field (52 Hbonds) | E = 0.001 V/nm (50 Hbonds) | E = 0.002 V/nm (54 Hbonds) | ||||||
---|---|---|---|---|---|---|---|---|
Donor | Acceptor | Occupancy | Donor | Acceptor | Occupancy | Donor | Acceptor | Occupancy |
GLY | GLU | 5.14% | GLY | GLU | 3.12% | GLY | GLU | 11.86% |
GLN | PRO | 2.12% | GLN | PRO | 8.08% | SER | GLU | 21.30% |
ASN | GLN | 5.54% | GLU | SER | 25.13% | GLN | PRO | 3.10% |
GLU | SER | 9.50% | SER | GLU | 40.05% | GLN | SER | 24.04% |
GLN- | SER | 3.24% | GLU | GLU | 6.08% | GLN | ASN | 2.92% |
GLN | ASN | 3.44% | SER | GLY | 2.02% | SER | ASN | 2.38% |
SER | GLU | 22.00% | SER | GLY | 8.26% | GLU | SER | 2.02% |
GLN | GLU | 4.46% | SER | ASN | 4.50% | |||
SER | GLU | 25.39% | GLU | SER | 5.22% | |||
GLU | GLU | 9.78% | ||||||
SER | GLN | 2.06% |
3.4. Radius of Gyration (Rg)
3.5. Solvent Accessible Surface Area (SASA)
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Wieser, H. Chemistry of gluten proteins. Food Microbiol. 2007, 24, 115–119. [Google Scholar] [CrossRef]
- Vader, L.W.; Stepniak, D.T.; Bunnik, E.M.; Kooy, Y.M.; de Haan, W.; van Veelen, P.A.; Koning, F. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 2003, 125, 1105–1113. [Google Scholar] [CrossRef]
- Stoven, S.; Murray, J.A.; Marietta, E. Celiac disease: Advances in treatment via gluten modification. Clin. Gastroenterol. Hepatol. 2012, 10, 859–862. [Google Scholar] [CrossRef]
- Mazzarella, G.; Salvati, V.M.; Iaquinto, G.; Stefanile, R.; Capobianco, F.; Luongo, D.; Bergamo, P.; Maurano, F.; Giardullo, N.; Malamisura, B.; et al. Reintroduction of gluten following flour transamidation in adult celiac patients: A randomized, controlled clinical study. Clin. Dev. Immun. 2012, 2012, e329150. [Google Scholar]
- Miśkiewicz, P.; Kępczyńska-Nyk, A.; Bednarczuk, T. Coeliac disease in endocrine diseases of autoimmune origin. Endokrynol. Polska 2012, 63, 240–249. [Google Scholar]
- Singh, A.; Orsat, V.; Raghavan, V. A comprehensive review on electrohydrodynamic drying and high voltage electric field in the context of food and bioprocessing. Drying Tech. 2012, 30, 1812–1820. [Google Scholar] [CrossRef]
- van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comp. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Wellner, N.; Mills, E.N.C.; Brownsey, G.; Wilson, R.H.; Brown, N.; Freeman, J.; Halford, N.G.; Shewry, P.R.; Belton, P.S. Changes in protein secondary structure during gluten deformation studied by dynamic fourier transform infrared spectroscopy. Biomacromolecules 2005, 6, 255–261. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Astrakas, L.; Gousias, C.; Tzaphlidou, M. Electric field effects on chignolin conformation. J. Appl. Phys. 2011, 109, e094702. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Purcell, J.M.; Kasarda, D.D.; Wu, C.S.C. Secondary structures of wheat α- and ω-gliadin proteins: Fourier transform infrared spectroscopy. J. Cereal Sci. 1988, 7, 21–32. [Google Scholar] [CrossRef]
- Heinig, M.; Frishman, D. STRIDE: A web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. 2004, 32, W500–W502. [Google Scholar] [CrossRef]
- Budi, A.; Legge, F.S.; Treutlein, H.; Yarovsky, I. Effect of external stresses on protein conformation: A computer modelling study. Eur. Biophys. J. 2004, 33, 121–129. [Google Scholar] [CrossRef]
- Kortemme, T.; Morozov, A.V.; Baker, D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 2003, 326, 1239–1259. [Google Scholar] [CrossRef]
- Fabiola, F.; Bertam, R.; Korostelev, A.; Chapman, M.S. An improved hydrogen bond potential: Impact on medium resolution protein structures. Prot. Sci. 2002, 11, 1415–1423. [Google Scholar] [CrossRef]
- Mata, I.; Molins, E.; Alkorta, I.; Espinosa, E. Effect of an external electric field on the dissociation energy and the electron density properties: The case of the hydrogen bonded dimer HF⋯HF. J. Chem. Phys. 2009, 130, e044104. [Google Scholar] [CrossRef]
- Maiuri, L.; Ciacci, C.; Ricciardelli, I.; Vacca, L.; Raia, V.; Auricchio, S.; Picard, J.; Osman, M.; Quaratino, S.; Londei, M. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 2003, 362, 30–37. [Google Scholar] [CrossRef]
- Henderson, K.N.; Tye-Din, J.A.; Reid, H.H.; Chen, Z.; Borg, N.A.; Beissbarth, T.; Tatham, A.; Mannering, S.I.; Purcell, A.W.; Dudek, N.L.; et al. A Structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 2007, 27, 23–34. [Google Scholar] [CrossRef]
- Budi, A.; Legge, F.S.; Treutlein, H.; Yarovsky, I. Comparative study of insulin chain-B in isolated and monomeric environments under external stress. J. Phys. Chem. B 2008, 112, 7916–7924. [Google Scholar]
- Budi, A.; Legge, F.S.; Treutlein, H.; Yarovsky, I. Electric field effects on insulin chain-B conformation. J. Phys. Chem. B 2005, 109, 22641–22648. [Google Scholar] [CrossRef]
- Budi, A.; Legge, F.S.; Treutlein, H.; Yarovsky, I. Effect of frequency on insulin response to electric field stress. J. Phys. Chem. B 2007, 111, 5748–5756. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Singh, A.; Munshi, S.; Raghavan, V. Effect of External Electric Field Stress on Gliadin Protein Conformation. Proteomes 2013, 1, 25-39. https://doi.org/10.3390/proteomes1020025
Singh A, Munshi S, Raghavan V. Effect of External Electric Field Stress on Gliadin Protein Conformation. Proteomes. 2013; 1(2):25-39. https://doi.org/10.3390/proteomes1020025
Chicago/Turabian StyleSingh, Ashutosh, Shirin Munshi, and Vijaya Raghavan. 2013. "Effect of External Electric Field Stress on Gliadin Protein Conformation" Proteomes 1, no. 2: 25-39. https://doi.org/10.3390/proteomes1020025
APA StyleSingh, A., Munshi, S., & Raghavan, V. (2013). Effect of External Electric Field Stress on Gliadin Protein Conformation. Proteomes, 1(2), 25-39. https://doi.org/10.3390/proteomes1020025