A Virtual Resource for Enhancing the Spatial Comprehension of Crystal Lattices
Abstract
:1. Introduction
2. Didactic Virtual Tool (DVT)
3. Methodology
4. Students’ Opinions
- Amend small typos;
- Indicate the place of octahedral and tetrahedral interstitial sites;
- Include the structure HCP in the DVT;
- Implement the application of the Miller indexes and the crystallographic directions.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Asbhy, M.F.; Jones, D.R.H. Engineering Materials 2: An Introduction to Microstructures and Processing, 4th ed.; Editorial Butterworth Heinemann: Oxford, UK, 2013. [Google Scholar]
- Callister, W.D. Materials Science and Engineering: An Introduction, 7th ed.; John Wiley & Sons: New York, NY, USA, 2007; ISBN 978-0-471-73696-7. [Google Scholar]
- Mangonon, P.L. The Principles of Materials Selection for Engineering Design; Prentice Hall International: Upper Saddle River, NJ, USA, 1999; ISBN 978-0132425957. [Google Scholar]
- Shackelford, J.F. Introduction for Materials Science for Engineers, 4th ed.; Prentice-Hall International: Upper Saddle River, NJ, USA, 1998; ISBN 978-0130112873. [Google Scholar]
- Smith, W.F.; Hashemi, J. Foundations of Materials Science and Engineering, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2009. [Google Scholar]
- Hsi, S.; Linn, M.C.; Bell, J.E. The role of spatial reasoning in engineering and the design of spatial instruction. J. Eng. Educ. 1997, 86, 151–158. [Google Scholar] [CrossRef]
- Garmendia, M.; Guisasola, J.; Sierra, E. First-year engineering students’ difficulties in visualization and drawing tasks. Eur. J. Eng. Educ. 2007, 32, 315–323. [Google Scholar] [CrossRef]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. New computer teaching tool for improving students´ spatial abilities in continuum mechanics. IEEE Technol. Eng. Educ. 2012, 7, 44–48. [Google Scholar]
- Meagher, K.A.; Doblack, B.N.; Ramirez, M.; Davila, L.P. Scalable nanohelices for predictive studies and enhanced 3D visualization. J. Vis. Exp. 2014, 93, e51372. [Google Scholar] [CrossRef] [PubMed]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. A virtual environment for enhancing the understanding of ternary phase diagrams. J. Mater. Educ. 2015, 37, 93–101. [Google Scholar]
- Rafi, A.; Khairul, A.; Samad, A.; Maizatul, H.; Mahadzir, M. Improving spatial ability using a web-based virtual environment (WbVE). Autom. Const. 2005, 14, 707–715. [Google Scholar] [CrossRef]
- Vergara, D.; Lorenzo, M.; Rubio, M.P. Virtual environments in materials science and engineering: The students’ opinion. In Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education, 1st ed.; Lim, H., Ed.; IGI Global: Hershey, PA, USA, 2015; pp. 148–165. [Google Scholar]
- Öz, C.; Serttaş, S.; Ayar, K.; Fındık, F. Effect of virtual welding simulator on TIG welding training. J. Mater. Educ. 2015, 37, 197–218. [Google Scholar]
- Wang, P.; Wu, P.; Wang, J.; Chi, H.-L.; Wang, X. A critical review of the use of virtual reality in construction engineering education and training. Int. J. Environ. Res. Public Health 2018, 15, 1204. [Google Scholar] [CrossRef] [PubMed]
- Sorby, S.A.; Baatmans, B.J. The development and assessment of a course for enhancing the 3-D spatial visualization skills of first year engineering students. J. Eng. Educ. 2000, 301–307. [Google Scholar] [CrossRef]
- Crown, S.W. Improving visualization skills of engineering graphics students using simple javascript web based games. J. Eng. Educ. 2001, 347–355. [Google Scholar] [CrossRef]
- Leopold, C.; Górska, R.A.; Sorby, S.A. International experiences in developing the spatial visualization abilities of engineering students. J. Geom. Graph. 2001, 15, 271–298. [Google Scholar]
- Rafi, A.; Samsudin, K.A.; Ismail, A. On improving spatial ability through computer-mediated engineering drawing instruction. Educ. Technol. Soc. 2006, 9, 149–159. [Google Scholar]
- Carbonell-Carrera, C.; Hess, M. Spatial orientation skill improvement with geospatial applications: Report of a multi-year study. ISPRS Int. J. Geo-Inf. 2017, 6, 278. [Google Scholar] [CrossRef]
- Buckley, J.; Seery, N.; Canty, D. A heuristic framework of spatial ability: A review and synthesis of spatial factor literature to support its translation into STEM education. Educ. Psychol. Rev. 2018, 1–26. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Arribas, V.; Casas, L.; Estopa, E.; Labrador, M. Interactive PDF files with embedded 3D designs as support material to study the 32 crystallographic point groups. Comput. Geosci. 2014, 62, 53–61. [Google Scholar] [CrossRef]
- Casas, L.; Estop, E. Virtual and printed 3d models for teaching crystal symmetry and point groups. J. Chem. Educ. 2015, 92, 1338–1343. [Google Scholar] [CrossRef]
- Sancho, E.; Araújo, E.; Conde, W.; Saraiva, I.; Maia, R.C.; Oliveira, L.M.; Sales, J.; Sombra, A.S.; Albuquerque, J.S. Models manufacturing of crystal systems: an introduction to ceramic materials. Mater. Sci. Forum 2018, 912, 280–284. [Google Scholar] [CrossRef]
- Stukowski, A. OVITO: Open Visualization Tool. Available online: http://www.ovito.org/ (accessed on 19 September 2018).
- Chan, C.; Fok, W. Evaluating learning experiences in virtual laboratory training through student perceptions: A case study in electrical and electronic engineering at the University of Hong Kong. Engl. Educ. 2009, 4, 70–75. [Google Scholar] [CrossRef]
- Smith, W.F. Ciencia e Ingeniería de Materiales; Mc Graw Hill: New York, NY, USA, 2004; ISBN 84-481-2956-3. [Google Scholar]
- Zander, S.; Wetzel, S.; Bertel, S. Rotate it! Effects of touch-based gestures on elementary school students’ solving of mental rotation tasks. Comput. Educ. 2016, 103, 158–169. [Google Scholar] [CrossRef]
- Courcel, M.J.; García, A.; Rodríguez, A.; Romero, M.A. What do university students think about the new active methodologies of education? Revista de Curriculum y Formación del Profesorado 2009, 13, 305–319. [Google Scholar]
- León, M.J.; Crisol, E. Questionnaire design (OPPUMAUGR y OPEUMAUGR): The views and perceptions of teachers and students on the use of actives methodologies at the university. Revista de Curriculum y Formación del Profesorado 2011, 13, 305–319. [Google Scholar]
- Smith, K.A. Cooperative learning: Making “groupwork” work. Dir. Teach. Learn. 1996, 67, 71–82. [Google Scholar] [CrossRef]
- Hwang, W.-Y.; Hu, S.-S. Analysis of peer learning behaviors using multiple representations in virtual reality and their impacts on geometry problem solving. Comput. Educ. 2013, 62, 308–319. [Google Scholar] [CrossRef]
- Conradty, C.; Bogner, F.X. Hypertext or textbook: Effects on motivation and gain in knowledge. Educ. Sci. 2016, 6, 29. [Google Scholar] [CrossRef]
- LaForce, M.; Noble, E.; Blackwell, C. Problem-based learning (PBL) and student interest in stem careers: The roles of motivation and ability beliefs. Educ. Sci. 2017, 7, 92. [Google Scholar] [CrossRef]
- Arango-López, J.; Cerón, C.C.; Collazos, C.A.; Gutiérrez, F.L.; Moreira, F. CREANDO: Tool for creating pervasive games to increase the learning motivation in higher education students. Telemat. Inform. 2018, in press. [Google Scholar]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. Interactive virtual platform for simulating a concrete compression test. Key Eng. Mater. 2014, 572, 582–585. [Google Scholar] [CrossRef]
- Vergara, D.; Rubio, M.P. The application of didactic virtual tools in the instruction of industrial radiography. J. Mater. Educ. 2015, 37, 17–26. [Google Scholar]
- Vergara, D.; Rubio, M.P.; Prieto, F.; Lorenzo, M. Enhancing the teaching/learning of materials mechanical characterization by using virtual reality. J. Mater. Educ. 2016, 38, 63–74. [Google Scholar]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 2017, 143. [Google Scholar] [CrossRef]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. On the design of virtual reality learning environments in engineering. Multimodal Technol. Interact. 2017, 1, 11. [Google Scholar] [CrossRef]
- Chasanidou, D. Design for motivation: Evaluation of a design tool. Multimodal Technol. Interact. 2018, 2, 6. [Google Scholar] [CrossRef]
Phase | Time | Description |
---|---|---|
1 | 2 h | Theoretical explanation of the crystal systems: explanation of the theory basics of the topic, formulation, crystallographic directions, Miller indexes for crystallographic planes, etc. |
2 | 0.5 h | Application of the DVT: spatial understanding of each one of the crystal systems and Bravais lattices. The use of the Didactic Virtual Tool (DVT) will be developed on an individual level to enhance a self-learning process. |
3 | 2 h | Exercises: students will solve a collection of exercises in small groups of 3–4 students, enhancing a collaborative learning process and peer-learning. |
Number | Question | Response |
---|---|---|
1 | Rate from 1 to 10 the following DVT features: | (A) Interactivity (B) Ease of use (C) Didactic usefulness (D) Motivation (E) Design |
2 | Rate from 1 to 10 the methodology proposed for learning crystalline systems. | (A) Master class (B) DVT (C) Problem solving |
3 | Possible improvements of the DVT | Comments: |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergara, D.; Rubio, M.P.; Lorenzo, M. A Virtual Resource for Enhancing the Spatial Comprehension of Crystal Lattices. Educ. Sci. 2018, 8, 153. https://doi.org/10.3390/educsci8040153
Vergara D, Rubio MP, Lorenzo M. A Virtual Resource for Enhancing the Spatial Comprehension of Crystal Lattices. Education Sciences. 2018; 8(4):153. https://doi.org/10.3390/educsci8040153
Chicago/Turabian StyleVergara, Diego, Manuel Pablo Rubio, and Miguel Lorenzo. 2018. "A Virtual Resource for Enhancing the Spatial Comprehension of Crystal Lattices" Education Sciences 8, no. 4: 153. https://doi.org/10.3390/educsci8040153
APA StyleVergara, D., Rubio, M. P., & Lorenzo, M. (2018). A Virtual Resource for Enhancing the Spatial Comprehension of Crystal Lattices. Education Sciences, 8(4), 153. https://doi.org/10.3390/educsci8040153