Processing Image to Geographical Information Systems (PI2GIS)—A Learning Tool for QGIS
Abstract
:1. Introduction
2. Methodology
2.1. The PI2GIS Application
2.1.1. PI2GIS Pre-Processing Module
2.1.2. PI2GIS Processing Module
2.1.3. PI2GIS Classification Module
2.2. Demonstration of PI2GIS
Dataset and Study Area
3. Results
3.1. Pre-Processing Module
3.2. Processing Module
3.3. Classification Module
4. Discussion and Conclusions
Author Contributions
Conflicts of Interest
References
- United Nations, Economic and Social Council. Progress towards the Sustainable Development Goals Report of the Secretary-General. 2017. Available online: https://unstats.un.org/sdgs/files/report/2017/secretary-general-sdg-report-2017--EN.pdf (accessed on 15 March 2018).
- Zaldívar-Colado, A.; Alvarado-Vázquez, R.I.; Rubio-Patrón, D.E. Evaluation of Using Mathematics Educational Software for the Learning of First-Year Primary School Students. Educ. Sci. 2017, 7, 79. [Google Scholar] [CrossRef]
- Conradty, C.; Bogner, F.X. Hypertext or Textbook: Effects on Motivation and Gain in Knowledge. Educ. Sci. 2016, 6, 29. [Google Scholar] [CrossRef]
- Khan, A.W. Universal Access to Knowledge as a Global Public Good. Global Economic Symposium, 2009. Available online: https://www.globalpolicy.org/social-and-economic-policy/global-public-goods-1-101/50437-universal-access-to-knowledge-as-a-global-public-good.html (accessed on 15 March 2018).
- Bush, A.; Sollmann, R.; Wilting, A.; Bohmann, K.; Cole, B.; Balzter, H.; Martius, C.; Zlinszky, A.; Calvignac-Spencer, S.; Cobbold, C.A.; et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 2017, 1, 0176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doldirina, C. Open Data and Earth Observations. The Case of Opening up Access to and Use of Earth Observation Data through the Global Earth Observation System of Systems. Open Data Earth Obs. 2015, 6, 73. Available online: https://www.jipitec.eu/issues/jipitec-6-1-2015/4174/doldirina.pdf (accessed on 15 March 2018).
- Rocchini, D.; Petras, V.; Petrasova, A.; Horning, N.; Furtkevicova, L.; Neteler, M.; Leutner, B.; Wegmann, M. Open data and open source for remote sensing training in ecology. Ecol. Inform. 2017, 40, 57–61. [Google Scholar] [CrossRef]
- Tsou, M.-H.; Smith, J. Free and Open Source Software for GIS Education. Department of Geography, San Diego State University, 2011. Available online: http://www.geotechcenter.org/uploads/2/4/8/8/24886299/tsou_free-gis-for-educators-whitepaper-final-draft-jan281.pdf (accessed on 21 November 2017).
- Di Palma, F.; Amato, F.; Nolè, G.; Martellozzo, F.; Murgante, B. A SMAP Supervised Classification of Landsat Images for Urban Sprawl Evaluation. ISPRS Int. J. Geo-Inf. 2016, 5, 109. [Google Scholar] [CrossRef]
- Huth, J.; Kuenzer, C.; Wehrmann, T.; Gebhardt, S.; Tuan, V.Q.; Dech, S. Land Cover and Land Use Classification with TWOPAC: Towards Automated Processing for Pixel—And Object-Based Image Classification. Remote Sens. 2012, 4, 2530–2553. [Google Scholar] [CrossRef]
- Usha, M.; Anitha, K.; Iyappan, L. Landuse Change Detection through Image Processing and Remote Sensing Approach: A Case Study of Palladam Taluk, Tamil Nadu. Int. J. Eng. Res. Appl. 2012, 2, 289–294. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project, 2017. Available online: https://www.qgis.org/en/site/ (accessed on 21 November 2017).
- Becker, D.; Willmes, C.; Bareth, G.; Weniger, G.-C. A plugin to interface openmodeller from QGIS for species’ potential distribution modelling. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 251–256. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, M.; Yang, C. A Generic Framework for Using Multi-Dimensional Earth Observation Data in GIS. Remote Sens. 2016, 8, 382. [Google Scholar] [CrossRef]
- Jung, M. LecoS—A python plugin for automated landscape ecology analysis. Ecol. Inform. 2016, 31, 18–21. [Google Scholar] [CrossRef]
- Teodoro, A.C.; Duarte, L. Forest fire risk maps: A GIS open source application—A case study in Norwest of Portugal. Int. J. Geogr. Inf. Sci. 2013, 27, 699–720. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Gonçalves, J.A.; Guerner Dias, A.J.; Espinha Marques, J. A dynamic map application for the assessment of groundwater vulnerability to pollution. Environ. Earth Sci. 2015, 74, 2315–2327. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Gonçalves, J.A.; Soares, D.; Cunha, M. Assessing soil erosion risk using RUSLE through a GIS open source desktop and web application. Environ. Monit. Assess. 2016, 188. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.; Teodoro, A.C. An easy, accurate and efficient procedure to create Forest Fire Risk Maps using Modeler (SEXTANTE plugin). J. For. Res. 2016, 27, 1361–1372. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Maia, D.; Barbosa, D. Radio Astronomy Demonstrator: Assessment of the Appropriate Sites through a GIS Open Source Application. ISPRS Int. J. Geo-Inf. 2016, 5, 209. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Gonçalves, J.A.; Moutinho, O. Open-source GIS application for UAV photogrammetry based on MicMac. Int. J. Remote Sens. 2016, 38, 8–10. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Moutinho, O.; Gonçalves, J.A. Distributed Temperature Measurement in a Self-Burning Coal Waste Pile through a GIS Open Source Desktop Application. ISPRS Int. J. Geo-Inf. 2017, 6, 87. [Google Scholar] [CrossRef]
- Garcia-Haro, F.J.; Martinez, B.; Gilabert, M.A. An educational software for remote sensing. In Proceedings of the 10th International Technology, Education and Development Conference (INTED), Valencia, Spain, 7–9 March 2016; pp. 5072–5079. [Google Scholar]
- Wang, X.; Chen, N.; Chen, Z.; Yang, X.; Li, J. Earth observation metadata ontology model for spatiotemporal-spectral semantic-enhanced satellite observation discovery: A case study of soil moisture monitoring. GISci. Remote Sens. 2016, 53, 22–44. [Google Scholar] [CrossRef]
- Song, Y.; Wu, C. Examining human heat stress with remote sensing technology. GISci. Remote Sens. 2018, 55, 19–37. [Google Scholar] [CrossRef]
- SAGA GIS. SAGA Software. 2017. Available online: http://www.saga-gis.org/ (accessed on 21 November 2017).
- OTB (OrfeoToolbox). Pan-Sharpening Description. 2017. Available online: https://www.orfeo-toolbox.org/Applications/Pansharpening.html (accessed on 22 November 2017).
- Nikolakopoulos, K.; Oikonomidis, D. Quality assessment of ten fusion techniques applied on Worldview-2. Eur. J. Remote Sens. 2015, 48, 141–167. [Google Scholar] [CrossRef] [Green Version]
- Mandanici, E.; Bitelli, G. Preliminary Comparison of Sentinel-2 and Landsat 8 Imagery for a Combined Use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef]
- GRASS GIS. 2017. Available online: https://grass.osgeo.org/ (accessed on 22 November 2017).
- Pktools. Pktools Documentation. 2017. Available online: http://pktools.nongnu.org/html/index.html (accessed on 16 March 2018).
- Congedo, L. Semi-Automatic Classification Plugin Documentation. 2016. Available online: https://fromgistors.blogspot.com/p/semi-automatic-classification-plugin.html (accessed on 21 November 2017). [CrossRef]
- GNU Operating System. GNU General Public License. 2017. Available online: https://www.gnu.org/licenses/gpl-3.0.en.html (accessed on 21 November 2017).
- Python. Python Programming Language. 2017. Available online: http://python.org/ (accessed on 22 November 2017).
- QGIS API. QGIS API Documentation. 2017. Available online: http://www.qgis.org/api/ (accessed on 20 November 2017).
- PyQt4 API. PyQt Class Reference. 2017. Available online: http://pyqt.sourceforge.net/Docs/PyQt4/classes.html (accessed on 20 November 2017).
- GDAL. Geospatial Data Abstraction Library. 2017. Available online: http://www.gdal.org/ (accessed on 20 November 2017).
- Qt Designer. Qt Documentation, Qt Designer Manual. 2017. Available online: http://doc.qt.io/qt-4.8/designer-manual.html (accessed on 21 November 2017).
- Matplotlib. 2017. Available online: http://matplotlib.org/ (accessed on 22 November 2017).
- Numpy. 2017. Available online: http://www.numpy.org/ (accessed on 22 November 2017).
- Scipy. 2017. Available online: https://www.scipy.org/ (accessed on 21 November 2017).
- Solem, J.E. Programming Computer Vision with Python. Creative Commons, 2012. Available online: http://programmingcomputervision.com/downloads/ProgrammingComputerVision_CCdraft.pdf (accessed on 21 November 2017).
- Gomez-Dans, J. Landsat DN to Radiance Script Using GDAL and Numpy. 2017. Available online: https://gist.github.com/jgomezdans/5488682 (accessed on 20 November 2017).
- Landsat 8 Data Users Handbook. USGS, 2017. Available online: https://landsat.usgs.gov/sites/default/files/documents/Landsat8DataUsersHandbook.pdf (accessed on 21 November 2017).
- Chavez, P.S. Image-Based Atmospheric Corrections—Revisited and Improved Photogrammetric Engineering and Remote Sensing, [Falls Church, Va.]. Am. Soc. Photogramm. 1996, 62, 1025–1036. [Google Scholar]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS Vegetation Index (MOD 13). Algorithm Theor. Basis Doc. 1999, 3, 213. [Google Scholar]
- Gao, B.-C. NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; Wiley: New York, NY, USA, 2015; 768p, ISBN 978-1-118-34328-9. [Google Scholar]
- USGS. U.S. Geological Survey. 2017. Available online: https://www.usgs.gov/ (accessed on 21 November 2017).
Processing Image Method | Tool | Algorithm |
---|---|---|
Histograms | Not available | Properties of a file (without details) |
Filters | OTB | Despeckle (frost, gammamap, kuan, lee), DimensionalityReduction (independent component analysis (ica), maximum autocorrelation factor (maf), noise adjusted principal component analysis (nacpa), pca), Exact Large-Scale Mean-Shift segmentation, step 1 (smoothing), Smoothing (anidif, gaussian, mean) |
SAGA | DTM filter (slope-based), Gaussian filter, Laplacian filter, Majority filter, Morphological filter, Multi direction lee filter, Rank filter, Resampling filter, Simple filter, User defined filter | |
GRASS | r.fill.dir, r.mfilter, r.mfilter.fp, r.resamp.filter | |
DN conversion to reflectance and atmospheric correction | Semi-Automatic Classification Plugin | DOS1 |
Environmental indexes (NDVI, EVI, NDWI) | SAGA GRASS | Vegetation index (slope-based)—NDVI Enhanced vegetation index—EVI i.vi—NDVI and EVI |
Colour composite | GDAL | Merge |
Pan-sharpening | OTB GRASS | Pansharpening (bayes, local mean and variance matching (lmvm), Simple RCS Pan sharpening operation (rcs)) i.pansharpen |
Unsupervised classification | OTB SAGA GRASS | Unsupervised KMeans image classification K-means clustering for grids i.cluster |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, R.; Duarte, L.; Teodoro, A.C.; Monteiro, A. Processing Image to Geographical Information Systems (PI2GIS)—A Learning Tool for QGIS. Educ. Sci. 2018, 8, 83. https://doi.org/10.3390/educsci8020083
Correia R, Duarte L, Teodoro AC, Monteiro A. Processing Image to Geographical Information Systems (PI2GIS)—A Learning Tool for QGIS. Education Sciences. 2018; 8(2):83. https://doi.org/10.3390/educsci8020083
Chicago/Turabian StyleCorreia, Rui, Lia Duarte, Ana Cláudia Teodoro, and António Monteiro. 2018. "Processing Image to Geographical Information Systems (PI2GIS)—A Learning Tool for QGIS" Education Sciences 8, no. 2: 83. https://doi.org/10.3390/educsci8020083
APA StyleCorreia, R., Duarte, L., Teodoro, A. C., & Monteiro, A. (2018). Processing Image to Geographical Information Systems (PI2GIS)—A Learning Tool for QGIS. Education Sciences, 8(2), 83. https://doi.org/10.3390/educsci8020083